

MathWorks Vision for Systematic Verification and Validation

Bill Aldrich
Senior Development Manager
Simulink Verification and Validation, Simulink Design Verifier

Siemens, "<u>Ford Motor Company Case Study</u>," Siemens PLM Software, 2014 McKendrick, J. <u>"Cars become 'datacenters on wheels', carmakers become software companies,"</u> ZDJNet, 2013

Development Challenges

- Representing complex systems
- Coordinating work across teams
- Working efficiently
- Ensuring quality

Traditional Development Process

Models for Specification

Model Abstraction – Work at an appropriate level of detail

Simscape Fluids

Simscape Multibody

Simscape Driveline

Simulink

Stateflow

MATLAB

Complete Model Based Design Workflow, Concept to Code

Complete Model Based Design Workflow, Concept to Code

How do you ensure correctness?

Model-Based Design Maturity, Automotive Industry

Model-Based Design Maturity, Automotive and Aerospace

Model Based Design Verification Workflow

Model Based Design Verification Workflow

Ad-Hoc Simulation: Explore Behavior Virtually

Model Based Design Verification Workflow

Test Harnesses

From <u>any</u> subsystem ...

Test Harnesses

From <u>any</u> subsystem ...

Isolate it with content it to drive inputs and analyze outputs

Group 1

throttle

Harness Inputs

Simulate independently

Can be embedded in design model file.

Test Sequence Block

A test sequence block can drive inputs

Test Sequence Block

A test sequence block can drive inputs and asses outputs

Test Sequence Block Syntax

Test Sequence Block Syntax

Defining Pass/Fail Criteria

Model Coverage

Identify testing gaps:

Untested switch positions

Subsystems not executed

Transitions not taken

Many more ...

Partial Coverage

Partial Coverage

Simulink Design Verifier

New Test Cases Test Cases

Full Coverage

Model Based Design Verification Workflow

Model Based Design Verification Workflow

- Manual review
- Standards compliance checking
- Design error detection
- Complexity analysis

Detecting Hidden Run-Time Design Errors

Design Model

- Integer overflow
- Division by zero
- Array out-of-bounds
- Range violations
- Dead Logic

Highlighted Model

Detecting Hidden Run-Time Design Errors

Detecting Hidden Run-Time Design Errors

Model Based Design Verification Workflow

Coverage for Generated Code (R2016a)


```
if (rtb ActiveControl) {
        /* Sum: '<S2>/Sum' incorporates:
         * DiscreteIntegrator: '<S2>/Discrete-Time Integrator'
         * Gain: '<S2>/Kp'
         * Gain: '<S2>/Kp1'
        *rty throt = 0.02 * rtb Switch2 + 0.01 *
         localDW->DiscreteTimeIntegrator DSTATE;
84
85
       /* Update for DiscreteIntegrator: '<S2>/Discrete-Time Integrator'
86
        localDW->DiscreteTimeIntegrator DSTATE += 0.01 * rtb Switch2;
87
        if (localDW->DiscreteTimeIntegrator DSTATE >= 5.0) {
         localDW->DiscreteTimeIntegrator DSTATE = 5.0;
89
        } else {
90
         if (localDW->DiscreteTimeIntegrator DSTATE <= -5.0) {</pre>
           localDW->DiscreteTimeIntegrator DSTATE = -5.0;
92
93
```

Generated Code Coverage

Coverage for Generated Code (R2016a)

Can also be highlighted on model

Model Based Design Verification Workflow

Model Based Design Verification Workflow

Systematic Verification

- Ensure that verification is systematically performed across:
 - All requirements
 - Complete model structure
 - Complete code structure
 - All design behaviors

Simulink Design Verifier

Simulink Test

Simulink Verification & Validation

Test and Verification

- Essential

Complex

Expensive - Pain Points

Test and Verification

- Essential → More Complete
- Expensive → Faster
- Complex \rightarrow Simpler

Thank You!