
Simulink® Check™
CI/CD Automation Support Package

R2022a and R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

CI/CD Automation for Simulink® Check™ Support Package
© COPYRIGHT 2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
August 2022 PDF Only Version 1.0
September 2022 PDF Only Version 1.1
October 2022 PDF Only Version 1.2
November 2022 PDF Only Version 2.0
December 2022 PDF Only Version 2.1

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Get Started
1

Fundamentals
2

MBD Pipeline . 2-2

Build System . 2-4

Process Advisor app . 2-5

CI/CD System Integration . 2-6

Run Tasks Using Process Advisor
3

Prequalify Changes Before Submitting to Source Control 3-2

Quick Reference for Process Advisor App . 3-5

Icon Overview . 3-9
Task Column . 3-9
I/O Column . 3-10
Details Column . 3-11

Author Your Process Model
4

About the Process Model . 4-2
Requirements . 4-2
Default Process Model . 4-2
Custom Process Models . 4-3

Create a Custom Process Model . 4-4

iii

Contents

How to Author a Process . 4-10
Create and View a Process Model . 4-10
Define a Task . 4-10
Add a Task . 4-11
Add Inputs to a Task . 4-12
Reconfigure a Task . 4-12
Change Task Order and Dependencies . 4-12

How Tasks, Queries, and Task Iterations Create Results 4-16

Example Process Models . 4-17
Add One Built-In Task and One Custom Task . 4-17
Specify a Task Execution Order . 4-17
Include Multiple Instances of a Task . 4-18
Run a Custom Task on Each Model in the Project 4-18

Control Builds
5

Run Tasks in MBD Pipeline Using Build System . 5-2

Incremental Builds . 5-3
How to Disable Incremental Builds . 5-3

Build System API . 5-4
Run Tasks in Pipeline . 5-4
View Available Tasks in Pipeline . 5-4
Generate Build Report . 5-4

Best Practices for Effective Builds . 5-6

Integrate into CI
6

Prerequisites . 6-2

Integrate into a GitLab CI System . 6-3
Integrate Using Default Options . 6-3
Customize Child Pipeline . 6-5

Troubleshooting and Limitations
7

Troubleshooting Missing Tasks or Artifacts . 7-2
Artifact Issues . 7-2
Resolve Path Issues . 7-2

iv Contents

Unsupported Modeling Constructs . 7-2
Other Limitations . 7-3

Limitations on Incremental Build . 7-4

Functions — Alphabetical List
8

Classes — Alphabetical List
9

Built-In Tasks — Alphabetical List
10

Check Coding Standards (Ref) . 10-3

Check Coding Standards (Top) . 10-4

Check Modeling Standards . 10-5

Detect Design Errors . 10-6

Generate Code (Ref) . 10-7

Generate Code (Top) . 10-8

Generate SDD Report . 10-9

Generate Simulink Web View . 10-10

Inspect Code (Ref) . 10-11

Inspect Code (Top) . 10-12

Merge Test Results . 10-13

Run Tests (per model) . 10-14

Run Tests (per test case) . 10-15

v

Built-In Queries — Alphabetical List
11

Use Built-In Query to Find Artifacts in Project . 11-3

Version History
12

vi Contents

Get Started

The support package CI/CD Automation for Simulink® Check™ provides tools to help you integrate
your model-based process into a Continuous Integration / Continuous Delivery (CI/CD) system.

The support package provides:

• A customizable process modeling system that you can use to define your build and verification
process

• A build system that can efficiently execute a pipeline in your CI system
• The Process Advisor app for deploying and automating your prequalification process
• Integration with common CI systems, including a pipeline generator to automatically create a

child pipeline configuration file for CI

You can use the support package to help you set up a model-based design (MBD) pipeline, reduce
build time, reduce build failures, debug build failures, and deploy a consistent build and verification
process.

For an overview of these features, see the chapter "Fundamentals".

Where to Get Started

If you are a:

• Model developer or test engineer, you may want to start with "Run Tasks Using Process Advisor".
• Process engineer, you may want to start with "Author Your Process Model" and "Run Builds".
• DevOps engineer, you may want to start with "Integrate into CI".

Note The support package only supports the MATLAB® versions:

• R2022b Update 1 and later updates
• R2022a Update 4 and later updates

1

Fundamentals

The following sections provides an overview of the:

• MBD Pipeline
• Build System
• Process Advisor app
• CI/CD System Integration

2

MBD Pipeline
In a typical CI/CD pipeline, the CI/CD system automatically builds your source code, performs testing,
packages deliverables, and deploys the packages to production. With the support package CI/CD
Automation for Simulink Check, you can create a pipeline for the steps in your build and verification
process, and maintain a repeatable CI/CD process for model-based design.

For example, you can create an MBD pipeline that checks modeling standards, runs tests, generates
code, and performs a custom task.

You can use the customizable process modeling system to define the steps in your model-based design
(MBD) pipeline. You define the steps by using a process model. A process model is a MATLAB script
that specifies the tasks in the CI/CD process, dependencies between the tasks, and artifacts that you
associate with each task.

A task is a single step in your process. Tasks can accept your project artifacts as inputs, perform
actions, generate pass, fail, or warning assessments, and return project artifacts as outputs.

The support package contains built-in tasks for several common steps, including:

• Creating Web views for your models with Simulink Report Generator™
• Checking modeling standards with the Model Advisor
• Running tests with Simulink Test™
• Detecting design errors with Simulink Design Verifier™
• Generating a System Design Description (SDD) report with Simulink Report Generator
• Generating code with Embedded Coder®

• Checking coding standards with Polyspace® Bug Finder™
• Inspecting code with Simulink Code Inspector™
• Running tests with Simulink Test
• Generating a consolidated test results report and a merged coverage report with Simulink Test

and Simulink Coverage™

The support package contains a default process model for an MBD pipeline, but you can also
customize the default process model to fit your development workflow goals. For example, your

2 Fundamentals

2-2

custom process model might include the built-in tasks for checking modeling standards, running
tests, and generating code before performing a custom task. You can customize the process model to
add or remove any tasks in the MBD pipeline. You can also reconfigure the tasks in your process
model to change what action a task performs or how a task performs the action.

For more information on the process modeling system, see the chapter "Author Your Process Model".
For information on built-in tasks, see the chapter "Built-In Tasks — Alphabetical List".

 MBD Pipeline

2-3

Build System
The support package CI/CD Automation for Simulink Check provides a build system that you can use
to orchestrate and automate the steps in your MBD pipeline. The build system is software that can
orchestrate tasks, efficiently execute tasks in the pipeline, and perform other actions related to the
pipeline.

The build system needs:

1 A MATLAB project to analyze
2 A process model in the project that defines the tasks in the pipeline

If the project does not contain a process model, the build system copies the default process model
into the project and uses the default process model to define a default MBD pipeline.

When you call the build system, the build system loads the process model, analyzes the project, and
orchestrates the creation of a pipeline of tasks.

To run the tasks in the pipeline, you can call the build system using one of these approaches:

• In a CI environment by using the build system API. The build system API includes a function
runprocess that you can use to run the tasks in a pipeline.

• Locally on your machine by using either the build system API or the Process Advisor app. The
Process Advisor app is a user interface that can call the build system. The Process Advisor app
has run buttons that you can use to run the tasks in a pipeline. If there is a failure in the CI
environment, you can reproduce the issue locally by using the Process Advisor app.

The build system supports incremental builds. If you change an artifact in your project, the build
system can detect the change and automatically determine which of the tasks in your MBD pipeline
now have outdated results. In your next build, you can instruct the build system to run only the tasks
with outdated results. By identifying the tasks with outdated results, the build system can help you
reduce build time by reducing the number of tasks you need to re-run after making changes to your
project artifacts.

Note There are limitations to the types of changes that the support package can detect. For more
information, see the "Limitations on Incremental Build" section in the Appendix.

2 Fundamentals

2-4

Process Advisor app
A prequalification process can help you prevent build and test failures from occurring in your CI/CD
system. Use the Process Advisor desktop app to deploy and automate your prequalification process.
You can use the app to run the tasks in your MBD pipeline and to prequalify your changes on your
machine before submitting to source control. The Process Advisor app is a user interface that runs
your tasks locally for prequalification. You can run the tasks in your MBD pipeline and to check your
progress towards completing tasks in your prequalification pipeline.

If you make a change to an artifact in your project, the Process Advisor can detect the change and
automatically determine the impact of the change on your existing task results. For example, if you
complete a task but then update your model, the Process Advisor automatically invalidates the task
completion and marks the task results as outdated.

Note There are limitations to the types of changes that the Process Advisor app can detect. For
more information, see the "Limitations on Incremental Build" section in the Appendix.

For information on Process Advisor, see "Run Tasks Using Process Advisor".

 Process Advisor app

2-5

CI/CD System Integration
You can use the support package CI/CD Automation for Simulink Check to integrate your model-based
design process into common CI/CD systems. For example, you can configure and integrate your MBD
pipeline by using a YAML file to configure your pipeline for GitLab® or a Jenkinsfile for configuring
your pipeline for Jenkins®.

The support package contains example pipeline configuration files:

• To open an example project that contains a GitLab pipeline file, enter this code in the MATLAB
Command Window:

processAdvisorGitLabExampleStart

This code creates an example project that contains an example YAML file, .gitlab-ci.yml, in
the project root. The YAML file defines a parent pipeline that uses the pipeline generator to
automatically create and execute a child pipeline that runs your tasks and collects job artifacts.

• To open an example project that contains an example Jenkins pipeline file, enter this code in the
MATLAB Command Window:

processAdvisorJenkinsExampleStart

This code creates an example project that contains an example Jenkinsfile, Jenkinsfile, in the
project root.

For more information on CI/CD for model-based design, see https://www.mathworks.com/company/
newsletters/articles/continuous-integration-for-verification-of-simulink-models.html.

For information on CI integration, see "Integrate into CI".

2 Fundamentals

2-6

https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html

Run Tasks Using Process Advisor

This chapter describes how to use the Process Advisor app to run tasks and prequalify your
changes.

• For an example of how to run tasks and review task results, see "Prequalify Changes Before
Submitting to Source Control".

• For an overview of the app, see "Quick Reference for Process Advisor App".
• For an overview of the icons that appear in the app, see "Icon Overview".

3

Prequalify Changes Before Submitting to Source Control
This example shows how to open the Process Advisor app, run tasks locally for prequalification, and
review task results. The example uses an example process model to create an MBD pipeline with
several common model-based design tasks. You can use the Process Advisor app to run each task in
the MBD pipeline before submitting to source control.

1 The Process Advisor app runs on MATLAB projects. For this example, open the Process
Advisor example project. In the MATLAB Command Window, enter:

processAdvisorExampleStart

This command creates a copy of the Process Advisor example project and opens the Process
Advisor app for the model AHRS_Voter.

The Process Advisor pane opens to the left of the Simulink canvas. The Process Advisor app
loads the process model, analyzes the project, and creates a pipeline of tasks. The Tasks column
shows the pipeline of tasks associated with the current model. The tasks appears in the order
that the build system will run them.

Note Each time you call processAdvisorExampleStart, MATLAB creates a new copy of the
Process Advisor example project. The example project contains several models and an example
process model file, processmodel.m, that specifies the tasks in the pipeline.

2 To view information about a task, point to the task in the Tasks column and click on the
information icon . When you click on the information icon, you can view the task description.

3 Point to the Generate Simulink Web View task and click the run button .

3 Run Tasks Using Process Advisor

3-2

The Generate Simulink Web View task runs on the current model. The Process Advisor logs
task activity in the MATLAB Command Window. When the task runs successfully, the status in the
Tasks column shows a green circle with a check mark .

4 In the top left corner of the Process Advisor pane, switch the filter from Model to Project.

When the filter is set to Project, the Process Advisor pane shows the tasks associated with the
project. By default, the Generate Simulink Web View task is configured to run once on each
model in the project. The Process Advisor uses a query to find each of the models in the project
and shows the names of the models as individual task iterations below the task title. The task
status for Generate Simulink Web View shows the multiple statuses icon because the task
passed on the AHRS_Voter model and was not run on the other models. For more information on
icons, see "Icon Overview".

Note You can click on an artifact name in the Tasks column to open the artifact.

To open a tool associated with the task, point to the task iteration and click ... > Open Tool
Name.

You can also open a new window that shows the tasks associated with the project by clicking on
the open project window button , to the left of the Edit process model icon .

5 Point to Generate Simulink Web View and click the run button to run the task for each
model in the project.

6 In the AHRS_Voter model, make a change and re-save the model. For this example, you can click
and drag the Model Info block to a different part of the Simulink canvas and re-save the model.

The Process Advisor detects the change to the model and shows a warning banner to indicate
that the app detected a change to the project and needs to refresh the task information shown in
the Process Advisor pane.

Note There are limitations to the types of changes that the Process Advisor can detect. For more
information, see the "Limitations on Incremental Build" section in the Appendix.

Note that sometimes the warning banner may appear while you are running tasks or after you
have finished running tasks, depending on when file system events reach MATLAB.

7 Click the Refresh Tasks button on the warning banner to have the Process Advisor reanalyze
the project.

If the Process Advisor detects that the change caused the task to be outdated, the task status in
the Tasks column turns gray. For example, if a task previously passed, but is now outdated, the
task status in the Tasks column shows the Passed (Outdated) icon .

The Process Advisor automatically identified that the Generate Simulink Web View task
results are outdated for both AHRS_Voter.slx and Flight_Control.slx. The task results for
AHRS_Voter.slx are outdated because you modified the model and directly invalidated the task
results. The task results for Flight_Control.slx are outdated because the AHRS_Voter model
now has outdated results and Flight_Control references the AHRS_Voter.

 Prequalify Changes Before Submitting to Source Control

3-3

8 Point to the Generate Simulink Web View task and click the run button .

The build system automatically runs an incremental build that runs only the outdated tasks and
skips any tasks that already have up-to-date results.

9 For the task Generate Simulink Web View, point to the output files icon to view hyperlinks
to the output files associated with the task.

In the column Results, the Process Advisor displays the number of passing, warning, or failing
results:

• A green check mark indicates a passing result.
• An orange triangle indicates a warning result.
• A red "X" indicates a failing result.

The Process Advisor aggregates the results of each task. For this example, the Generate
Simulink Web View task successfully created five Web views, so the column Results shows a
value of 5 next to the green check mark for the task.

The log in the MATLAB Command Window shows the build results from running the task,
including the number of task iterations that the build system was able to skip because the results
were already up-to-date.

Build Status: Pass
Number of tasks: 5
Number of tasks executed: 2
Number of tasks skipped: 3

10 Generate a PDF report with the current task results. Create a
padv.ProcessAdvisorReportGenerator object and call generateReport on the object. In
the MATLAB Command Window, enter:

rptObj = padv.ProcessAdvisorReportGenerator; % create a report object
generateReport(rptObj) % generate a report

The report summarizes the task statuses, task results, and other information about the task
execution. For more information, see the "Generate Build Report" section of the PDF.

To run each of the tasks shown in the Tasks column, click Run All. The build system automatically
skips tasks that have up-to-date results. After each task passes, you can submit your changes to
source control.

For more information on the Process Advisor app, see "Quick Reference for Process Advisor App".

3 Run Tasks Using Process Advisor

3-4

Quick Reference for Process Advisor App

 Quick Reference for Process Advisor App

3-5

Process Advisor
Automate your development workflow and prequalify changes before submitting to source control

Description
Use the Process Advisor app to create, deploy, and automate a consistent prequalification process
for Model-Based Design (MBD). The app includes built-in tasks for performing common MBD tasks
like checking modeling standards with the Model Advisor app, running tests with Simulink Test,
generating code with Embedded Coder, and inspecting code with Simulink Code Inspector. You can
use the customizable process modeling system to define the steps in your process and use the app to
run each of the steps. As you edit and save the artifacts in your project, the app tracks changes and
automatically identifies tasks and task iterations that have outdated results. The Process Advisor
app runs your tasks locally for prequalification. The tasks run on the machine that is running
MATLAB and does not use an external CI system.

To run tasks:

• Point to a task in the Tasks column and click the run button to run that task and any dependent
tasks.

• Click Run All to run each of the tasks shown in the Tasks column.
• Click Run All > Force Run All to force the build system to run each task, even if the tasks

already have up-to-date results.
• Click Run All > Clean All to clear the task results and delete task outputs for each of the tasks.
• Click Run All > Refresh All to manually refresh the list of tasks that appears in the Tasks

column.

When the Process Advisor app runs tasks, a Stop button appears in the top-right corner. You can
click the Stop button to stop the queued tasks from running next.

At the bottom of the Process Advisor app is a Project Analysis Issues pane. When you click on
Project Analysis Issues, you can view any files that the app was unable to analyze. Note that the
app cannot generate task iterations or detect outdated results for unanalyzed files. Fix the issues
listed in the Project Analysis Issues pane to make sure the app can fully analyze the project,
generate the expected task iterations, and detect outdated results.

3 Run Tasks Using Process Advisor

3-6

Open the Process Advisor App
• From a Simulink model: On the Apps tab, under Model Verification, Validation, and Test, click

Process Advisor.
• From a MATLAB Project: On the Project tab, in the Tools section, click Process Advisor.

Examples

Open Process Advisor For Model

Open the Process Advisor app for a Simulink model in a MATLAB project.

Create and open a working copy of the Process Advisor example project. MATLAB copies the files to
an example folder so that you can edit them.

processAdvisorExampleStart

The project contains the model OuterLoop_Control.slx.

Open the Process Advisor app for the model OuterLoop_Control.slx.

processadvisor("OuterLoop_Control")

Open Process Advisor For Project

Open the Process Advisor for a MATLAB project and view the pipeline of tasks.

Create and open a working copy of an example project. MATLAB copies the files to an example folder
so that you can edit them.

proj = Simulink.createFromTemplate("code_generation_example.sltx",...
Name="New Project");

Open the Process Advisor for the project.

processAdvisorWindow

The Tasks column shows the pipeline of tasks generated from the process model.

Click Edit to open the processmodel.m file that defines the process.

Programmatic Use
Note that you need to load a MATLAB project before you open the Process Advisor.

processadvisor(modelName) opens the Simulink model, modelName, in the current project and
opens a Process Advisor pane to the left of the Simulink canvas.

processAdvisorWindow() opens the Process Advisor app for the current project. The app opens
in a standalone window.

 Process Advisor

3-7

Version History
Introduced in R2022a

3 Run Tasks Using Process Advisor

3-8

Icon Overview
The Process Advisor app uses the:

• Tasks column to show the statuses for the tasks and task iterations.

• I/O column to show the outputs from the tasks and task iterations.

• Details column to show detailed results for tasks and task iterations that specify result values.

Task Column
The status for the task or task iteration is shown on the left side of the Tasks column.

 Icon Overview

3-9

Statuses in the Tasks Column

Icon Status of the Task or Task Iteration Icon When
Results Outdated

Icon When
Incremental
Builds Turned Off

Not run. Not applicable. Uses same icon.

Currently running. Not applicable. Uses same icon.

Queued to run during the current build. Not applicable. Uses same icon.

Passed.

Failed.

Generated an error.

Multiple statuses for different
iterations of a task.

Uses same icon.

For more information on the task statuses, see the documentation for the Status property of the
padv.TaskResult class in the chapter "Classes — Alphabetical List".

Note Tasks that generated an error do not rerun automatically. To rerun an errored task, point to the
task and click the run button or use runprocess with RerunErroredTasks as true.

I/O Column
The Process Advisor app shows the outputs from a task or task iteration when you point to the icon
in the I/O column.

3 Run Tasks Using Process Advisor

3-10

Outputs in the I/O Column

Icon Description Icon When Outdated
The task or task iteration output a single artifact.

The task or task iteration output multiple
artifacts.

For more information on the outputs, see the documentation for the OutputArtifacts property of
the padv.TaskResult class in the chapter "Classes — Alphabetical List".

Details Column
Detailed results from a task or task iteration are shown in the Details column.

 Icon Overview

3-11

Results in the Details Column

Icon Result Value Result Value for the Task or Task
Iteration

Icon When
Outdated

Pass. The value to the right of the icon
indicates the number of result values
that passed.

Warn. The value to the right of the icon
indicates the number of result values
that generated a warning. Review the
reports, outputs, or other results from
the task.

Fail. The value to the right of the icon
indicates the number of result values
that failed. Review any reports,
outputs, or other results from the task.

For more information on the detailed results, see the documentation for the ResultValues property
of the padv.TaskResult class in the chapter "Classes — Alphabetical List".

3 Run Tasks Using Process Advisor

3-12

Author Your Process Model

This chapter describes how to use the customizable process modeling system to define your build and
verification process.

• For an overview of the process modeling system, see "About the Process Model".
• For an example, see "Create a Custom Process Model".
• For instructions on how to use the API to author processes, see "How to Author a Process". This

section includes information on how to:

• "Create and View a Process Model"
• "Define a Task"
• "Add a Task"
• "Add Inputs to a Task"
• "Reconfigure a Task"
• "Change Task Order and Dependencies"

• For a pseudocode example of how tasks, queries, and task iterations interact, see "How Tasks,
Queries, and Task Iterations Create Results".

• For short, example process models, see "Example Process Models".

Tip You can access API help from the MATLAB Command Window by using help function.

For example, this code returns help information for the class padv.Task:

help padv.Task

The PDF also includes documentation for the API and built-ins:

• "Functions — Alphabetical List"
• "Classes — Alphabetical List"
• "Built-In Tasks — Alphabetical List"
• "Built-In Queries — Alphabetical List"

4

About the Process Model
There are several ways to create a process model. You can copy an empty process model into your
project and add tasks to the process model. You can also copy the default process model into your
project and modify that process model to fit your MBD process.

Requirements
The Process Advisor app requires you to have:

• Your files in a MATLAB project.
• A processmodel.m file on the MATLAB path. If possible, place your processmodel.m file in the

project root folder so changes to the process model file are tracked. If your project does not have
a process model and you open the Process Advisor app, the Process Advisor automatically
creates a default process model for you at the root of the project.

You define your pipeline of tasks in the process model. The process model is a file, processmodel.m,
that specifies the tasks in the process, queries that determine which artifacts to use for each task,
artifacts associated with each task, and dependencies between the tasks.

Your file serves as the process model if it meets the following criteria:

• The filename is processmodel.m.
• The file is in the project root folder.

You do not need to manually run the process model. The process model only defines the tasks that
you want to include in your pipeline. When you run tasks by using the Process Advisor app or the
build system API, the build system automatically loads the process model to create your pipeline of
tasks.

Default Process Model
The support package includes a default processmodel.m file that can create an MBD pipeline. You
can modify the default processmodel.m file to fit your development process goals or you can create
a new process model from an empty template.

The build system can use the default process model to create an MBD pipeline containing several
common model-based design tasks. At the top of the default process model, there are several
variables which you can use to control whether a task is included or excluded from the process

4 Author Your Process Model

4-2

model. For example, if you set includeModelStandardsTask to false, you can exclude the Check
Modeling Standards task and the task does not appear in your pipeline. However, you might want
to more extensively customize the process model by adding custom tasks or reconfiguring the built-in
tasks to perform differently.

Custom Process Models
The support package contains several built-in tasks and built-in queries that you can use to define the
steps in your process. You can use the addTask function to add a built-in task or a custom task to
your process model.

Tip You can view the source code for the built-in tasks.

In the MATLAB Command Window, enter:

fullfile(matlabshared.supportpkg.getSupportPackageRoot,...
"\toolbox\padv\build_service\ml\+padv\+builtin\+task")

MATLAB returns the path to the folder that contains the source code.

For example, the path on your machine may look like:

"C:\ProgramData\MATLAB\SupportPackages\R2022a_1\toolbox\padv\build_service\ml\...
+padv\+builtin\+task"

 About the Process Model

4-3

Create a Custom Process Model
This example shows how to create a custom process model that defines the tasks in your MBD
pipeline, add built-in tasks, add dependencies between tasks and specify the task execution order,
and add a custom task.

This example uses Simulink Check, Embedded Coder, and Polyspace Bug Finder.

For this example, consider a process in which you want to prequalify your changes by:

• Checking modeling standards with Model Advisor
• Generating top model code with Embedded Coder
• Analyze the generated top model code with Polyspace Bug Finder
• Run a custom Hello, World! task

1 If you do not already have the Process Advisor example project open, in the MATLAB Command
Window, enter:

processAdvisorExampleStart
2 For this example, overwrite the example process model with an empty process model by

entering:

createprocess(Template="empty",Overwrite=true)

The process model at the root of the project is now empty and does not specify any tasks.

Note The support package includes a default processmodel.m file that can create an MBD
pipeline with common, model-based design tasks. To copy the default process model into a
project, enter:

createprocess(Template="default",Overwrite=true)

Note that for some default tasks, you may need to install a specific license or install the MinGW®

compiler. For more information, point to a task in the Process Advisor app and click the
information icon . You can view the task description.

3 Open the process model for the project. In the AHRS_Voter model, at the top of the Process
Advisor pane, click the edit process model icon .

The Process Advisor opens the process model at the root of the project. The process model is
the empty process model you created by using the createprocess function. The empty process
model contains commented out example code that shows how to specify the tasks, queries, and
settings used for the pipeline.

4 Add three built-in tasks to your process model by replacing the code in your processmodel.m
file with the following code:

4 Author Your Process Model

4-4

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 %% ADDING THREE BUILT-IN TASKS TO THE PROCESS MODEL
 % Task 1: Check Modeling Standards
 maTaskObj = addTask(pm, padv.builtin.task.RunModelStandards);
 % Task 2: Generate Top Model Code
 cgTaskObj = addTask(pm, padv.builtin.task.GenerateCodeAsTopModel);
 % Task 3: Check Coding Standards for the Top Model Code
 if exist('polyspaceroot','file') % if Polyspace installed and setup
 psTaskObj = addTask(pm, padv.builtin.task.AnalyzeTopModelCode);
 end

end

Note If you do not have the license for a specific task shown in an example process model, you
can delete references to the task. For example, the built-in task
padv.builtin.task.AnalyzeTopModelCode uses Polyspace Bug Finder. If you do not have a
Polyspace Bug Finder license, you can delete the line that uses addTask to add
padv.builtin.task.AnalyzeTopModelCode to the process.

pm is the padv.ProcessModel object for the process model.

The addTask function allows you to add tasks to the process model. The following table shows
the connection between the task object names used in this example process model, the task
instances used in the addTask function, and the task title shown in the Process Advisor app.

Task Object in
Process Model

Task Instance in addTask Task Title in
Process
Advisor app

maTaskObj padv.builtin.task.RunModelStandards Check
Modeling
Standards

cgTaskObj padv.builtin.task.GenerateCodeAsTopModel Generate Code
(Top)

psTaskObj padv.builtin.task.AnalyzeTopModelCode Check Coding
Standards
(Top)

Note When you type padv.builtin.task., you can use tab completion to see a list of the
available built-in tasks.

For other example process models, see the "Example Code" section. For more information on the
built-in tasks, see the Appendix of this PDF.

The output of the addTask function is a task object. For example, maTaskObj is a task object
associated with the added task Check Modeling Standards. You can use task objects to
configure task settings and add dependencies on other tasks.

 Create a Custom Process Model

4-5

5 Save the processmodel.m file and return to the Process Advisor pane in the window for the
AHRS_Voter model.

When you update the process model, the Process Advisor detects the change and marks any
task statuses as outdated.

6 Click Refresh Tasks to refresh the tasks shown in the Process Advisor pane.

When the filter is set to Model, the Process Advisor pane shows only the built-in task Check
Modeling Standards because that is the only task associated with the AHRS_Voter model. The
other built-in tasks only run for top models in the project.

7 In the top left corner of the Process Advisor pane, switch the filter from Model to Project.

The Process Advisor pane shows each of the three built-in tasks. The built-in tasks Check
Coding Standards (Top) and Generate Code (Top) only run for top models in the project. The
Process Advisor found the top model, Flight_Control, and associated the model with the
tasks.

8 Point to Check Coding Standards (Top) and click the run button .

The task status shows the Fails icon . The task failed to run because there is no generated code
available to analyze. To run successfully, the task Check Coding Standards (Top) depends on
having top model code to run on.

9 Re-open the process model file.
10 Specify the task execution order and dependencies by replacing the code in your process model

with the following code:

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 %% ADDING THREE BUILT-IN TASKS TO THE PROCESS MODEL
 %% AND SPECIFYING TASK EXECUTION ORDER AND DEPENDENCIES
 % Task 1: Check Modeling Standards
 maTaskObj = addTask(pm, padv.builtin.task.RunModelStandards);
 % Task 2: Generate Top Model Code
 cgTaskObj = addTask(pm, padv.builtin.task.GenerateCodeAsTopModel);
 % Code generation should run after checking modeling standards
 runsAfter(cgTaskObj, padv.builtin.task.RunModelStandards);
 % Task 3: Check Coding Standards for the Top Model Code
 if exist('polyspaceroot','file') % if Polyspace installed and set up
 psTaskObj = addTask(pm, padv.builtin.task.AnalyzeTopModelCode);
 % Code inspection depends on the generated code
 dependsOn(psTaskObj, padv.builtin.task.GenerateCodeAsTopModel);
 end

end

The process model specifies that the code generation task, cgTaskObj, should run after the
model standards checking task, maTaskObj, because even though the code generation task does
not require any data or inputs from the model standards checking task, you only want to
generate code for models that have had model standards checking run on them. The code
analysis task, psTaskObj, has a data dependency on the code generation task because it needs
generated code to analyze.

11 Return to the Process Advisor pane, click Refresh Tasks, and confirm the new order of the
tasks.

4 Author Your Process Model

4-6

In Process Advisor, the Tasks column shows the tasks in the following order: Check Modeling
Standards, Generate Code (Top), Check Coding Standards (Top).

12 Point to the Check Coding Standards (Top) task and point to the run button .

The Process Advisor highlights the outdated tasks and dependent tasks associated with the
current task. For this example, the Check Coding Standards (Top) task depends on the
Generate Code (Top) task, so the Process Advisor highlights both tasks. The Check Coding
Standards (Top) task is outdated because there are no task results.

If you were to run the Check Coding Standards (Top) task, the Generate Code (Top) task
would run first and the Check Coding Standards (Top) task would show a queued icon,
indicating that the Check Coding Standards (Top) needs to run after the Generate Code
(Top) task.

13 Re-open the process model file.
14 By default, the Check Modeling Standards task runs a subset of high-integrity systems checks

specified by a default Model Advisor configuration file. Reconfigure the Check Modeling
Standards task to run a different Model Advisor configuration file by replacing the code in your
process model with the following code:

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 %% ADDING THREE BUILT-IN TASKS TO THE PROCESS MODEL
 %% AND SPECIFYING TASK EXECUTION ORDER AND DEPENDENCIES
 % Task 1: Check Modeling Standards
 maTaskObj = addTask(pm, padv.builtin.task.RunModelStandards);
 % Task 2: Generate Top Model Code
 cgTaskObj = addTask(pm, padv.builtin.task.GenerateCodeAsTopModel);
 % Code generation should run after checking modeling standards
 runsAfter(cgTaskObj, padv.builtin.task.RunModelStandards);
 % Task 3: Check Coding Standards for the Top Model Code
 if exist('polyspaceroot','file') % if Polyspace installed and set up
 psTaskObj = addTask(pm, padv.builtin.task.AnalyzeTopModelCode);
 % Code inspection depends on the generated code
 dependsOn(psTaskObj, padv.builtin.task.GenerateCodeAsTopModel);
 end

 %% RE-CONFIGURING A BUILT-IN TASK
 % Specify a different Model Advisor configuration file for the task
 % Create a query that looks for your Model Advisor Configuration file
 findMyConfigFile = padv.builtin.query.FindFileWithAddress(...
 'ma_config_file', fullfile('tools','sampleChecks.json'));
 % Find the configuration file and use it as an input to the task
 addInputQueries(maTaskObj,findMyConfigFile);

end

To reconfigure the Check Modeling Standards task to run a different Model Advisor
configuration, the example code specifies an input query. When you specify an input query, you
specify which queries the task uses to find input artifacts for the task. The function
addInputQueries allows you to specify which query the task uses to identify inputs to the task.
If you do not specify an input query, the Check Modeling Standards task runs a default Model
Advisor configuration that contains a subset of high-integrity systems checks.

 Create a Custom Process Model

4-7

This process model creates query, findMyConfigFile, that finds the Model Advisor
configuration file for the Check Modeling Standards task to use. findMyConfigFile uses the
built-in query padv.builtin.query.FindFileWithAddress to look for a file of type
ma_config_file (Model Advisor configuration file), named sampleChecks.json, in the tools
folder of the project. You can check which artifacts a query returns by defining and running the
query in the MATLAB Command Window. For example, if you enter the following code in the
MATLAB Command Window:

findMyConfigFile = padv.builtin.query.FindFileWithAddress(...
 'ma_config_file', fullfile('tools','sampleChecks.json'))
findMyConfigFile.run % outputs files returned by the query

The query returns the files found.

When you specify addInputQueries(maTaskObj,findMyConfigFile), the Check Modeling
Standards task uses the specified Model Advisor configuration file instead of the default
configuration file.

Note If you wanted to specify a list of check IDs instead of a configuration, you could modify the
RunOptions of maTaskObj:

maTaskObj.RunOptions.CheckIDList = {'mathworks.jmaab.db_0032',...
'mathworks.jmaab.jc_0281'};

If you specify both a Model Advisor configuration file and a list of check IDs for a task, the task
uses the Model Advisor configuration file.

For other examples of how to reconfigure the built-in tasks for your process, see the default
process model.

15 Add a custom task by replacing the code in your process model with the following code:

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 %% ADDING THREE BUILT-IN TASKS TO THE PROCESS MODEL
 %% AND SPECIFYING TASK EXECUTION ORDER AND DEPENDENCIES
 % Task 1: Check Modeling Standards
 maTaskObj = addTask(pm, padv.builtin.task.RunModelStandards);
 % Task 2: Generate Top Model Code
 cgTaskObj = addTask(pm, padv.builtin.task.GenerateCodeAsTopModel);
 % Code generation should run after checking modeling standards
 runsAfter(cgTaskObj, padv.builtin.task.RunModelStandards);
 % Task 3: Check Coding Standards for the Top Model Code
 if exist('polyspaceroot','file') % if Polyspace installed and set up
 psTaskObj = addTask(pm, padv.builtin.task.AnalyzeTopModelCode);
 % Code inspection depends on the generated code
 dependsOn(psTaskObj, padv.builtin.task.GenerateCodeAsTopModel);
 end

 %% RE-CONFIGURING A BUILT-IN TASK
 % Specify a different Model Advisor configuration file for the task
 % Create a query that looks for your Model Advisor Configuration file
 findMyConfigFile = padv.builtin.query.FindFileWithAddress(...
 'ma_config_file', fullfile('tools','sampleChecks.json'));

4 Author Your Process Model

4-8

 % Find the configuration file and use it as an input to the task
 addInputQueries(maTaskObj,findMyConfigFile);

 %% ADD A CUSTOM TASK
 % Add a task "My Custom Task" that calls the function "SayHello"
 myTaskObj = addTask(pm, "My Custom Task",Action=@SayHello);

end

% ADD THE FUNCTION THAT DEFINES THE TASK THE CUSTOM TASK PERFORMS
function results = SayHello(~)
 disp("Hello, World!");
 results = padv.TaskResult;
 results.ResultValues.Pass = 1;
end

Inside the processmodel function, the addTask function adds a custom task, My Custom
Task, which performs the action of calling the function SayHello. For this example, the function
SayHello displays the string Hello, World! in the log in the Command Window and returns a
passing result. But you can customize the contents of the custom function to run a task that is
part of your development process.

By default, custom tasks run on the whole project, but you can change the IterationQuery to
specify the list of artifacts that the task iterates over.

16 Specify the list of artifacts that the custom task iterates over by changing line 31 of the process
model to:

 myTaskObj = addTask(pm, "My Custom Task",Action=@SayHello,...
 IterationQuery=padv.builtin.query.FindModels);

The built-in query padv.builtin.query.FindModels finds the models in the current project.
The IterationQuery specifies that the task should run once for each artifact returned by the
query. For more information, see the "Customize the Process Model" section of the PDF.

17 Save the process model, return to the Process Advisor pane, and click Refresh Tasks to see the
updated list of tasks and task execution order.

The Process Advisor now shows a custom task My Custom Task that is configured to run once
for each model in the project.

 Create a Custom Process Model

4-9

How to Author a Process

Create and View a Process Model
If your project does not have a process model and you open the Process Advisor app, the Process
Advisor automatically creates a default process model for you at the root of the project. Alternatively,
you can use the createprocess function to create a process model.

• You can use the createprocess function to copy the default process model into any project:

createprocess(Template="default")

• You can also use the createprocess function to create an empty process model:

createprocess(Template="empty")

• If a process model already exists in the project, you can overwrite the existing process model by
setting Overwrite to true.

createprocess(Template="empty",Overwrite=true)

For more information, see the documentation for the createprocess function in the chapter
"Functions — Alphabetical List".

View the Properties of the Process Model

The processmodel.m file defines the process model. You can load the process model and view the
properties of the process model by using the getprocess function.

pm = getprocess

pm =

 ProcessModel with properties:

 TaskNames: ["padv.builtin.task.DetectDesignErrors" …]
 QueryNames: ["padv.builtin.query.GetDependentArtifacts" …]
 DefaultQueryName: "padv.builtin.query.FindProjectFile"
 RootFileName: "processmodel.m"

The process model, pm, returned by getprocess is a padv.ProcessModel. For more information,
see the documentation for the getprocess function in the chapter "Functions — Alphabetical List".

You can use the findTask and findQuery functions on the loaded process model to find specific
tasks and queries in the process.

findTask(pm,"padv.builtin.task.RunModelStandards")

Define a Task
A task is a single step in your process. Tasks can accept your project artifacts as inputs, perform
actions, generate pass, fail, or warning assessments, and return project artifacts as outputs.

4 Author Your Process Model

4-10

You can define a task by using either of the following approaches:

• Function-based tasks — Use the function addTask to both create and add a task. You can use
the name-value arguments of the addTask function to define properties like the inputs to the task,
what action the task performs, and the results from the task.

For more information, see "Add a Task".
• Class-based tasks — Create a class that inherits from padv.Task and implements a run

method.

For more information, see the documentation for the padv.Task class in the chapter "Classes —
Alphabetical List".

You can add both function-based and class-based tasks to the process model. Class-based tasks allow
you to parameterize the task using class properties, but function-based tasks are easier to implement
and do not require separate class definition files.

Add a Task
You can use the function addTask to add a task to the process model.

The build system uses the process model to generate a pipeline of tasks.

The addTask function requires two inputs: a process model object and a task name or task instance.

addTask(ProcessModelObject, TaskNameOrInstance)

Use the addTask function to add tasks to the process model, pm.

• Add a built-in task.

For example, to add the built-in task for running model standards with the Model Advisor,
padv.builtin.task.RunModelStandards, to a process model argument pm, use the following
code in the process model:

addTask(pm, padv.builtin.task.RunModelStandards);

 How to Author a Process

4-11

• Add a custom task named "MyCustomTask":

addTask(pm,"MyCustomTask")
• Specify name-value arguments. For example, specify how often a task can run by setting the

IterationQuery argument. In this case, specify that the task runs once on each model found in
the project.

addTask(pm,"CustomTaskThatRunsForEachModel",...
 IterationQuery=padv.builtin.query.FindModels)

For more information, see the documentation for "padv.ProcessModel.addTask" in the chapter
"Classes — Alphabetical List".

Add Inputs to a Task
The output of addTask is a configurable task object.

For certain tasks, you can use a built-in query to find specific files or types of files in your project and
then use addInputQueries to specify the files as inputs to your task.

For example, the following code uses a query to find a Model Advisor configuration file and specifies
the file as an input to the built-in task for checking modeling standards:

% Add task to process model
maTask = addTask(pm, padv.builtin.task.RunModelStandards());

% Find the Model Advisor configuration file
% and use the file as an input to maTask
maTask.addInputQueries(padv.builtin.query.FindFileWithAddress(...
 'ma_config_file', fullfile('tools','sampleChecks.json')));

Reconfigure a Task
You can use the task object to reconfigure how a task performs an action.

For example, you can override the default output file location and specify a different location:

% Add task to process model
maTask = addTask(pm, padv.builtin.task.RunModelStandards());

% Specify a default report path where any output results should go
defaultResultPath = fullfile('$PROJECTROOT$', '04_Results','$ITERATIONARTIFACT$');

% Specify a subfolder 'model_standards_results'
% in the default report path as the report path for the maTask
maTask.RunOptions.ReportPath = fullfile(...
 defaultResultPath,'model_standards_results');

Change Task Order and Dependencies
Specify the Task Execution Order

Use the function runsAfter to specify the order that tasks should run in the pipeline.

The runsAfter function requires two inputs:

4 Author Your Process Model

4-12

runsAfter(TaskObject,Predecessors)

If one task should run before another task, even if the tasks do not depend on data from each other,
use runsAfter to specify the order the tasks should run in the pipeline.

For example, suppose the task for checking modeling standards should run after the task that
generates a Simulink Web view. Specify the desired task order by using the runsAfter function in
the process model:

%% Add task to check model standards on a model
 maTask = addTask(pm, padv.builtin.task.RunModelStandards());

%% Add task to generate a Simulink WebView for a model
 slwebTask = addTask(pm, padv.builtin.task.GenerateSimulinkWebView());

%% Set Task Execution Order
 runsAfter(maTask, slwebTask);

Note Tasks may execute in a different order for different models in the project. For example, suppose
you specify:

• TaskC runs after TaskB
• TaskB runs after TaskA

If each of the tasks runs on the current model, the task execution order is:

1 TaskA
2 TaskB
3 TaskC

But if TaskB does not run on the current model, the build system does not assume that TaskC should
run after TaskA. The task execution order may be:

1 TaskC
2 TaskA

If you want to specify that predecessors need to run all task iterations or that the build system must
follow a strict task order, use the name-value arguments of the runsAfter function:
IterationArtifactMatching and StrictOrdering.

For more information, see the documentation for the runsAfter function in the chapter "Classes —
Alphabetical List". runsAfter is an object function for the padv.Task class.

Specify a Data Dependency

Use the process model to define the tasks that the build system adds to the pipeline and the
relationships between the tasks.

Use the function dependsOn to specify a data dependency between tasks.

The dependsOn function requires two inputs:

dependsOn(TaskObject,Dependencies)

 How to Author a Process

4-13

If the output of one task is the input to another task, there is a data dependency between the tasks.

For example, the code inspection task needs generated code to inspect, so the code inspection task
depends on the code generation task. Specify the task dependency relationship by using the
dependsOn function in the process model:

 defaultResultPath = fullfile('$PROJECTROOT$', '04_Results','$ITERATIONARTIFACT$');

%% Add Task for Inspecting Top Model Code
 slciTopTask = addTask(pm,...
 padv.builtin.task.RunCodeInspection("IsTopModel",true));
 slciTopTask.ReportFolder = fullfile(defaultResultPath,'code_inspection');

%% Add Task for Generating Code
 codegenTopMdlTask = addTask(pm,...
 padv.builtin.task.GenerateCodeAsTopModel());

%% Set Task Dependencies
 dependsOn(slciTopTask, codegenTopMdlTask);

If you want to specify that dependencies need to run all task iterations or that dependencies do not
need to pass, use the name-value arguments of the dependsOn function:
IterationArtifactMatching and WhenStatus.

For more information, see the documentation for the dependsOn function in the chapter "Classes —
Alphabetical List". dependsOn is an object function for the padv.Task class.

dependsOn Versus runsAfter

In the process model, you can use the functions dependsOn and runsAfter to specify dependencies
between tasks and the task execution order.

Suppose you have two tasks, TaskA and TaskB.

• If TaskA outputs data that TaskB needs, use dependsOn to specify the data dependency.
• If TaskB should not run without TaskA running first, use dependsOn to make sure that even if

you only specify that run TaskB needs to run, TaskA will run first automatically (even if TaskA
was not in the queue to run).

• If you want TaskB to run after TaskA, but only if both tasks are queued to run, use runsAfter to
specify the desired execution order.

dependsOn defines a data dependency between tasks. If TaskB depends on TaskA and you run
TaskB, TaskA will automatically run first (even though TaskA was not in the queue to run). For

4 Author Your Process Model

4-14

example, if you have the Check Coding Standards (Ref) task in your process, that task depends on
the task that generates the code, Generate Code (Ref). The task Check Coding Standards (Ref)
depends on the code files output by the task Generate Code (Ref). Additionally, Check Coding
Standards (Ref) should not run until after Generate Code (Ref) runs.

runsAfter specifies the desired execution order for a task, without specifying a dependency
between that task and the preceding task. runsAfter does not force the preceding task to execute,
but does specify the execution order if both tasks are going to run. If TaskB runs after TaskA and
you run TaskB, TaskA does not run. If you specify that you want to run both TaskA and TaskB,
runsAfter will try to run TaskA before TaskB. For example, if you have the Check Modeling
Standards task in your process, it may be helpful, but not a requirement for your process, that the
Check Modeling Standards task execute before the Generate Code (Ref) task. In that case, you
can use runsAfter to specify that if both Check Modeling Standards and Generate Code (Ref)
are going to be run, that the system should run the Check Modeling Standards task first.

 How to Author a Process

4-15

How Tasks, Queries, and Task Iterations Create Results
For a pseudocode example of how tasks, queries, and task iterations create results:

%% For each Task we can run the IterationQuery to determine what artifacts we
%% run the tasks for

IterationArtifacts=Task.IterationQuery.run();

%% You can run the Task for all or a subset of artifacts.
%% This is how we create a Task Iteration, run additional Queries and run the
%% Task, and save the Results

for IterationArtifact = IterationArtifacts

 taskIteration=TaskIteration(IterationArtifact)

%% For each Task Iteration we run the Input Queries to find the inputs for
%% for the specific task iteration

 for InputQuery = Task.InputQueries
 taskIteration.Inputs{end+1}= InputQuery.run(IterationArtifact);
 end

%% For each Input we run the Input Dependency Queries to find any additional
%% dependencies that can affect staleness

 for input = [taskIteration.Inputs{:}]
 taskIteration.AdditionalDeps{end+1}=Task.InputDependencyQuery.run(input)
 end

%% We run the Task with the inputs the iteration, and capture the
%% results

 taskIteration.Results=Task.run(taskIteration.Inputs);

%% Finally, the results of the iteration are saved

end

4 Author Your Process Model

4-16

Example Process Models

Add One Built-In Task and One Custom Task
function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 % Adding a built-in task
 task1 = addTask(pm,padv.builtin.task.RunModelStandards);

 % Adding a custom task
 task2 = addTask(pm,"Custom Task",Action=@CustomAction);

 % Specify that the custom task should run after the built-in task
 runsAfter(task2,task1);

end

 function results = CustomAction(~)
 disp("Hello, world")
 results = padv.TaskResult;
 end

Specify a Task Execution Order
function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 %% ADD CUSTOM TASKS TO THE PROCESS MODEL
 task1 = addTask(pm,"Task 1");
 task2 = addTask(pm,"Task 2");
 task3 = addTask(pm,"Task 3");
 task4 = addTask(pm,"Task 4");
 task5 = addTask(pm,"Task 5");

 %% SPECIFY THE TASK EXECUTION ORDER
 % task2 must run after task1
 runsAfter(task2,task1,StrictOrdering=true);
 % task3 should run after task2
 % but task3 can run independently
 runsAfter(task3,task2);
 % task4 should run after task3
 % but task4 can run independently
 runsAfter(task4,task3);
 % task5 must run after task4
 runsAfter(task5,task4,StrictOrdering=true);

end

 Example Process Models

4-17

Include Multiple Instances of a Task
If you include duplicates of a task, the Process Advisor will return an error.

To include multiple instances of the same type of task, you need to specify different values of Name for
each of the tasks. For built-in tasks, you need to override the Name when you create the task iteration.

For example, suppose you want to add two versions of the built-in task
padv.builtin.task.RunTestsPerTestCase. When you create an instance of the task by using
padv.builtin.task.RunTestsPerTestCase, you need to specify a different value for the Name.

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end
 taskA_v1 = addTask(pm,...
 padv.builtin.task.RunTestsPerTestCase(Name="Something else"),...
 Title="Task A - Version 1");
 taskA_v2 = addTask(pm, padv.builtin.task.RunTestsPerTestCase,...
 Title="Task A - Version 2");
end

You can then specify different values for the IterationQuery so that the tasks operate on different
sets of artifacts.

Run a Custom Task on Each Model in the Project
You can use the IterationQuery and InputQueries arguments to specify the artifacts that your
task runs on.

For example, you could have a custom task that analyzes each models in the project and returns the
maximum cyclomatic complexity returned by the metric API:

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 maTaskObj = addTask(pm, padv.builtin.task.RunModelStandards);
 cgTaskObj = addTask(pm, padv.builtin.task.GenerateCodeAsTopModel);
 cgTaskObj.dependsOn(padv.builtin.task.RunModelStandards);

 % Custom Task
 myTaskObj = addTask(pm,"Run Custom Task",Action=@MyCustomTask,...
 IterationQuery=padv.builtin.query.FindModels,...
 InputQueries=padv.builtin.query.GetIterationArtifact);

end

function results = MyCustomTask(inputs)
 % identify model name
 model = inputs{1};
 [~,modelName,~] = fileparts(model.Address);

 % Load model
 load_system(modelName)

4 Author Your Process Model

4-18

 % Collect model metrics
 metric_engine = slmetric.Engine();
 setAnalysisRoot(metric_engine,'Root',modelName,'RootType','Model');
 metricID = 'mathworks.metrics.CyclomaticComplexity';
 execute(metric_engine,metricID);

 % Access Results
 res_col = getMetrics(metric_engine, metricID);
 maxValSeen = 0;
 metricData = {'Model','Aggregated Value'};
 for n=1:length(res_col)
 results = res_col(n).Results;
 for m=1:length(results)
 maxValSeen = max(maxValSeen,results(m).AggregatedValue);
 end
 end

 % Export Data
 metricData{2,1} = modelName;
 metricData{2,2} = maxValSeen;
 sys = char(modelName);
 filename = ['cyclomaticMetric_', sys, '.xlsx'];
 T = table(metricData);
 writetable(T,filename);

 % Determine pass / fail task results
 results = padv.TaskResult;
 if (strcmp(res_col.Category,'Compliant'))
 results.ResultValues.Pass = maxValSeen;
 results.OutputPaths = string(fullfile(pwd,filename));
 else
 results.ResultValues.Fail = maxValSeen;
 end
end

 Example Process Models

4-19

Control Builds

This chapter describes how to run builds and customize build execution.

• For an overview of the build system, see "Run Tasks in MBD Pipeline Using Build System".
• For information on incremental builds and full builds, see "Incremental Builds".
• For an overview of the API for running builds, see "Build System API". This section includes

information on how to:

• "Run Tasks in Pipeline"
• "View Available Tasks in Pipeline"
• "Generate Build Report"

• For guidance on when and how to execute builds, see "Best Practices for Effective Builds".

5

Run Tasks in MBD Pipeline Using Build System
You can run tasks programmatically by using the runprocess function.

• To run each of the tasks associated with the current project, enter:

runprocess()
• To run a specific set of tasks, specify a list of tasks by using the Tasks argument. For example,

you can specify the relative path to a model, use the generateProcessTasks function to list the
tasks, and then specify the Tasks argument.

% specify the relative path to the model AHRS_Voter
model = padv.Artifact("sl_model_file", "\02_Models\AHRS_Voter\specification\AHRS_Voter.slx");
% find the tasks associated with the model AHRS_Voter
ahrsVoterTasks = generateProcessTasks(FilterArtifact=model)
% run only the ahrsVoterTasks
runprocess(Tasks=ahrsVoterTasks)

For more information, see the documentation for the runprocess function in the chapter
"Functions — Alphabetical List".

5 Control Builds

5-2

Incremental Builds
By default, the build system and the Process Advisor app perform incremental builds. Incremental
builds can help you reduce the number of task iterations that you need to re-run by identifying and
running only the task iterations with outdated results. If the task iteration results are up-to-date, the
build system and the Process Advisor app skip the task iteration.

How to Disable Incremental Builds
If you want to force the build system and the Process Advisor app to re-run task iterations, you can
disable incremental builds for the project. When you disable incremental builds, the build system and
the Process Advisor app do not identify any results as up-to-date or outdated, and effectively force
run task iterations in the project. In the Process Advisor app, in the Tasks column, the statuses for
tasks and task appear in black because the app is no longer identifying up-to-date or outdated results.
The statuses only indicate whether the task or task iteration passed, failed, generated an error, or did
not run.

You can disable incremental builds by using one of the following approaches:

• In the Process Advisor app, in the toolstrip, clear the check box for the Incremental Build
option.

• Create a padv.Preferences object and specify the property IncrementalBuild as false. For
example:

PREF = padv.Preferences;
PREF.IncrementalBuild = false;

Note that padv.Preferences do not persist if you restart your MATLAB session or if you run
clear classes. To create preferences that the Process Advisor app and build system will use
each time they run on your project, create a project startup script that specifies the properties for
padv.Preferences.

 Incremental Builds

5-3

Build System API

Run Tasks in Pipeline
You can run tasks programmatically by using the runprocess function.

• To run each of the tasks associated with the current project, enter:

runprocess()

• To run a specific set of tasks, specify a list of tasks by using the Tasks argument. For example,
you can specify the relative path to a model, use the generateProcessTasks function to list the
tasks, and then specify the Tasks argument.

% specify the relative path to the model AHRS_Voter
model = padv.Artifact("sl_model_file", "\02_Models\AHRS_Voter\specification\AHRS_Voter.slx");
% find the tasks associated with the model AHRS_Voter
ahrsVoterTasks = generateProcessTasks(FilterArtifact=model)
% run only the ahrsVoterTasks
runprocess(Tasks=ahrsVoterTasks)

View Available Tasks in Pipeline
• Use the generateProcessTasks function to return a list of the available tasks in the current

process model.

generateProcessTasks

• List a set of specific tasks by using the FilterArtifact argument. For example, you can specify
the relative path to a model and list the associated tasks.

% specify the relative path to the model AHRS_Voter
model = padv.Artifact("sl_model_file", "\02_Models\AHRS_Voter\specification\AHRS_Voter.slx");
% find the tasks associated with the model AHRS_Voter
ahrsVoterTasks = generateProcessTasks(FilterArtifact=model)

Generate Build Report
After you run the tasks in your pipeline, you can generate a report that summarizes the build results
for each task in your pipeline. The report includes a:

• Summary of task statuses
• Summary of task results
• Details about the task configuration and execution

After you run a task, create a padv.ProcessAdvisorReportGenerator report object.

rptObj = padv.ProcessAdvisorReportGenerator;

Run generateReport on the report object to generate a build report in the current directory.

generateReport(rptObj)

For example, if you run the tasks in the default MBD pipeline, the report provides an overview of the:

5 Control Builds

5-4

• Model Advisor analysis, including the number of passing, warning, and failing checks
• Test results, organized by iteration
• Generated code files
• Coding standards checks

By default, the report generator generates a PDF. To generate an HTML report, specify the Format of
the ProcessAdvisorReportGenerator object as html-file.

htmlReport=padv.ProcessAdvisorReportGenerator(Format="html-file");
generateReport(htmlReport);

Note If you want to run tasks and generate a report in batch mode, you need to specify the
runprocess argument ExitInBatchMode as false and use the exitCode returned by
runprocess to exit:

[buildResult, exitCode] = runprocess(ExitInBatchMode=false);
rptObj = padv.ProcessAdvisorReportGenerator();
generateReport(rptObj);
exit(exitCode);

Otherwise, the function runprocess automatically exits MATLAB before the report can generate.

 Build System API

5-5

Best Practices for Effective Builds
The following are best practices for an effective build schedule:

• For builds that you perform on a daily or more frequent basis, use incremental builds. Incremental
builds are faster and more efficient, but incremental builds skip tasks that the build system
considers up to date.

By default, the function runprocess performs an incremental build:

runprocess()

If you use a pull request workflow, incremental builds are helpful for efficiently prequalifying
changes before merging with the main repository.

• Outside of the normal build schedule, you should run a full (non-incremental) build at least one
time per week and anytime you are qualifying software for a release. When you run a full build,
the build system force runs each of the tasks in the pipeline. The full build makes sure that each
task in the pipeline executes and that the output artifacts reflect the latest changes.

To run a full build, use the function runprocess with the argument Force specified as True:

runprocess(Force=true)

The Force argument forces tasks in the pipeline to execute, even if the tasks already have up to
date results.

For more information, see "Incremental Builds" and the documentation for the runprocess function
in the chapter "Functions — Alphabetical List".

5 Control Builds

5-6

Integrate into CI

This chapter describes how to integrate MathWorks® tools into a CI system using the support
package CI/CD Automation for Simulink Check.

• For an overview of system requirements and setup, see "Prerequisites".
• For information on how to integrate into GitLab, see "Integrate into a GitLab CI System".

Tip The support package includes example pipeline configuration files for GitLab and Jenkins
systems.

• For GitLab —

In the MATLAB Command Window, enter:

processAdvisorGitLabExampleStart

This code creates an example project that contains an example YAML file, .gitlab-ci.yml, in
the project root. The YAML file defines a parent pipeline that uses the pipeline generator to
automatically create and execute a pipeline that runs your tasks and collects job artifacts.

• For Jenkins —

In the MATLAB Command Window, enter:

processAdvisorJenkinsExampleStart

This code opens a MATLAB project and an example Jenkinsfile, Jenkinsfile.

Before you use the example Jenkinsfile, edit the file to specify the appropriate Git 'branch',
'credentialsId', and 'url' for your repository.

6

Prerequisites
Before integrating into a CI/CD system:

1 Check that the CI system can run MATLAB. For information on the supported platforms, see
https://www.mathworks.com/help/matlab/matlab_prog/continuous-integration-with-matlab-on-ci-
platforms.html.

Note License Considerations for CI: If you plan to perform CI on many hosts or on the cloud,
contact MathWorks (continuous-integration@mathworks.com) for help. Transformational
products such as MathWorks coder and compiler products may require client access licenses
(CAL).

2 Install the support package CI/CD Automation for Simulink Check for the MATLAB instance or
instances that run in your CI system.

For information on how CI/CD can apply to model-based design, see https://www.mathworks.com/
company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html.

6 Integrate into CI

6-2

https://www.mathworks.com/help/matlab/matlab_prog/continuous-integration-with-matlab-on-ci-platforms.html
https://www.mathworks.com/help/matlab/matlab_prog/continuous-integration-with-matlab-on-ci-platforms.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html

Integrate into a GitLab CI System
A pipeline is a collection of automated procedures and tools that execute in a specific order to enable
a streamlined software delivery process. CI systems allow you to define and configure a pipeline by
using a pipeline configuration file. In GitLab, you can configure your pipeline by using a .yml file that
you store in your project. The .yml file can configure different parts of your CI/CD jobs including the
stages of the job, the tag for your GitLab Runner, the script that the Runner executes, and artifacts
you want to attach to a successful job.

The support package CI/CD Automation for Simulink Check comes with an example .yml
file, .gitlab-ci.yml, that you can add to your project to automatically run pipelines in GitLab. The
example .gitlab-ci.yml file generates and executes pipelines for you so that you do not need to
manually update any pipeline files when you change the tasks and artifacts in your project.

Integrate Using Default Options
1 Connect your MATLAB project to GitLab by following the instructions in Appendix 1 of https://

www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-
simulink-models-using-gitlab.html.

2 Open the GitLab example project that contains the example .gitlab-ci.yml file. In the
MATLAB Command Window, enter:

processAdvisorGitLabExampleStart

This command creates a copy of the example project and opens the example .gitlab-ci.yml
file from the root of the project.

3 Copy the example .gitlab-ci.yml file into your MATLAB project and then add the file to your
MATLAB project.

Note The example .gitlab-ci.yml file is generic and can work with any MATLAB project that
contains a processmodel.m file.

4 Open and inspect the .gitlab-ci.yml file in your project.

The file .gitlab-ci.yml defines a parent pipeline. The parent pipeline uses the pipeline
generator, padv.pipeline.generatePipeline, to automatically generate and execute a child
pipeline for your MATLAB project. The options for the child pipeline are specified by the object
padv.pipeline.GitLabOptions. For more information about parent-child pipelines, see
https://docs.gitlab.com/ee/ci/pipelines/downstream_pipelines.html.

5 In your .gitlab-ci.yml file, replace padv_demo_ci with the CI/CD tag associated with your
GitLab Runner.

For example, if your Runner is associated with the tag highMemory, change the tags field to:

 tags:
 - highMemory

6 Modify the object padv.pipeline.GitLabOptions to specify the CI/CD tag associated with
your GitLab Runner. .gitlab-ci.yml passes the tag to the child pipeline.

 Integrate into a GitLab CI System

6-3

https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models-using-gitlab.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models-using-gitlab.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models-using-gitlab.html
https://docs.gitlab.com/ee/ci/pipelines/downstream_pipelines.html

For example, if your Runner is associated with the tag highMemory, you would specify:

 padv.pipeline.generatePipeline(
 padv.pipeline.GitLabOptions(
 Tags="highMemory",
 PipelineArchitecture = padv.pipeline.Architecture.SerialStagesGroupPerTask));

Now your .gitlab-ci.yml file will have your GitLab Runner tag specified in the tags field and
in your padv.pipeline.GitLabOptions in the call to the pipeline generator.

7 Push the changes to your GitLab repository.

By default, a GitLab project automatically considers any file named .gitlab-ci.yml as the
CI/CD configuration file for the repository. Your GitLab Runner can now automatically generate
and execute a custom pipeline for your project each time that you submit changes.

6 Integrate into CI

6-4

Note You do not need to update the .gitlab-ci.yml file if you make changes to your projects
or process model. The pipeline generator generates the child pipeline using the latest project and
process model. You only need to update the .gitlab-ci.yml file if you want to change how the
pipeline generator organizes and executes the pipeline.

In GitLab, your pipeline will contain several jobs:

• Two upstream jobs:

• SimulinkPipelineGeneration — Generates a child pipeline configuration file
• SimulinkPipelineExecution — Executes the child pipeline configuration file

• Downstream jobs in the child pipeline:

• One job for each task defined in the processmodel.m file
• One job that collects job artifacts

If you want to change how the downstream jobs get organized and executed, you can modify the
properties of the padv.pipeline.GitLabOptions. For example, you can modify the
PipelineArchitecture property to change the number of stages in your child pipeline. For more
information, see "Customize Child Pipeline" or enter this code in the MATLAB Command Window:

help padv.pipeline.GitLabOptions

Customize Child Pipeline
You can use the properties of padv.pipeline.GitLabOptions to control which GitLab Runner
tags to associate with the child pipeline, the stages in the pipeline (the pipeline architecture), how
tasks execute, MATLAB startup options in CI, and artifact collection for CI jobs.

For example, in your .gitlab-ci.yml file you can change the script field to specify different
values for the Tags, RerunFailedTasks, and PipelineArchitecture properties in
padv.pipeline.GitLabOptions:

 script:
 # Open the project and generate the pipeline using
 # appropriate options
 - >
 matlab
 -nodesktop
 -logfile "$MATLAB_LOG_FILE"
 -batch "
 cp = openProject(pwd);
 cd(cp.RootFolder);
 padv.pipeline.generatePipeline(
 padv.pipeline.GitLabOptions(
 Tags="highMemory",
 RerunFailedTasks = true,
 PipelineArchitecture = padv.pipeline.Architecture.SerialStages));
 "

This code specifies that the pipeline should be associated with the GitLab Runner tag highMemory,
should try to rerun failed tasks, and should use a serial stage pipeline architecture that creates a job
for each task iteration.

 Integrate into a GitLab CI System

6-5

To see a list of the available properties in the MATLAB Command Window, enter:

help padv.pipeline.GitLabOptions

Customize Pipeline Architecture

After you run a pipeline, GitLab shows the overall status of the pipeline and the status of each stage
in the pipeline. For example, the Stages column can show a pipeline mini graph that shows the first
stage passed, the second stage failed, and the third stage was skipped.

If you want to group the information that appears in your pipeline results, you can specify a pipeline
architecture that defines more stages. If a pipeline has more stages, you can more easily identify
where any failures occurred, but the pipeline execution may not be as efficient.

If you specify the pipeline architecture as:

• SingleStage — The generated pipeline contains a single stage, Runprocess, that runs all tasks.

padv.pipeline.GitLabOptions(...
PipelineArchitecture = padv.pipeline.Architecture.SingleStage)

• SerialStagesGroupByTask — The generated pipeline contains one stage for each type of task.

padv.pipeline.GitLabOptions(...
PipelineArchitecture = padv.pipeline.Architecture.SerialStagesGroupPerTask)

• SerialStages — The generated pipeline contains one stage for each task iteration.

padv.pipeline.GitLabOptions(...
PipelineArchitecture = padv.pipeline.Architecture.SerialStages)

6 Integrate into CI

6-6

Comparison of Pipeline Architectures

The following table compares the different pipeline architectures.

Pipeline Architecture Description Pros Cons
SingleStage One stage for all

tasks
Efficient execution
since the CI system
only launches
MATLAB and the
MATLAB project one
time

Difficult to identify
where a failure
occurred. If the
pipeline fails, you
must investigate the
logs, build report, or
other output files to
identify which
specified task or task
iteration failed.

SerialStagesGroupByTask One stage for each
task. The stages run
in series, not in
parallel.

If the pipeline fails,
you can see which
task failed, directly
in the pipeline
results.

Less efficient
execution because
the CI system has to
close and reopen
MATLAB and the
MATLAB Project one
time for each stage

SerialStages One stage for each
task iteration. The
stages run in series,
not in parallel.

If the pipeline fails,
you can see which
task iteration failed,
directly in the
pipeline results.

Inefficient execution
because the CI
system has to close
and reopen MATLAB
and the MATLAB
Project one time for
each stage

 Integrate into a GitLab CI System

6-7

Troubleshooting and Limitations

7

Troubleshooting Missing Tasks or Artifacts
When you use CI/CD Automation for Simulink Check, the support package creates a digital thread to
capture the attributes and unique identifiers of the artifacts in your project. The digital thread is a set
of metadata information about the artifacts in a project, the artifact structure, and the traceability
relationships between artifacts. The Process Advisor app and build system monitor and analyze the
digital thread to identify artifacts, detect changes to project files, generate task iterations, and
identify outdated task results.

See the next sections for troubleshooting steps and limitations.

Artifact Issues
Before you begin troubleshooting the Process Advisor app or build system, check that:

• Artifacts are saved in the project.
• Artifacts are not in a referenced project. Project references are not fully supported.
• Artifacts are on the MATLAB search path before you open the Process Advisor app.
• You used the Process Advisor app or build system to run your tasks and to collect task results.
• Artifacts are not saved to a prohibited output folder. Prohibited output folders include the

simulation cache, project resources folder, and .SimulinkProject.
• You have a compiler configured. You should use the same compiler that you use in the target

development environment. If you only have the MinGW compiler installed on your system, the mex
command automatically chooses MinGW.

Resolve Path Issues
If an artifact is not on the MATLAB search path, add the artifact to your MATLAB project, then close
and re-open the project. When you re-open the project, the MATLAB search path reflects the updated
search path.

Note If a test harness is saved inside a model file, the Process Advisor and build system return an
incorrect warning that the internal test harness is not on the MATLAB search path. Ignore the
warning, and, if possible, convert your internal test harnesses to external test harnesses so that the
support package can differentiate between changes to the test harness and changes to the main
model.

To convert a test harness, open Simulink Test for the main model and, on the Tests tab, click Manage
Test Harnesses > Convert to External Harnesses. Click Yes to convert the affected test
harnesses.

Unsupported Modeling Constructs
If there are issues with an artifact, check that the artifact does not use the following unsupported
modeling constructs:

7 Troubleshooting and Limitations

7-2

Affected Artifact Unsupported Construct
Library Library forwarding table

Self-modifiable masks
Model Saved in release R2012a or earlier

Model loading callbacks
Model shadowing

Test case MATLAB-based Simulink test

Other Limitations
There are known limitations in the Process Advisor app and build system:

• If a top model and at least one referenced model have unsaved changes, the Process Advisor is
unable to save the top model and generates the error:The following files were not able
to be saved: <Path to top model>

• If a test harness is saved inside a model file, the Process Advisor and build system return an
incorrect warning that the internal test harness is not on the MATLAB search path. Ignore the
warning, and, if possible, convert your internal test harnesses to external test harnesses so that
the support package can differentiate between changes to the test harness and changes to the
main model.

• This issue may affect Linux® users: If you point to a task and try to click on more options in
the ...menu, the standalone Process Advisor app may miss the mouse click. As a workaround, use
the arrows on the keyboard and press Enter to interact with the options in the menu.

 Troubleshooting Missing Tasks or Artifacts

7-3

Limitations on Incremental Build
There are changes that incremental build does not detect. Tasks depending on those changes will
remain up-to-date and will not execute with Run All. If incremental build does not detect changes to
a file that a task depends on, the file is an untracked dependency.

The table in this section lists the known untracked dependencies.

• The Artifact column lists the artifacts with known untracked dependencies.
• The Untracked Dependency column lists the files that incremental build does not detect changes

to. Changes to these files do not cause tasks associated with the artifact to become outdated.

For example, if you have a model that uses a referenced global workspace variable and you make a
change to the variable, the task results associated with the model will not become outdated. The table
shows:

• Artifact: Model
• Untracked Dependency: Referenced global workspace variable

Artifact Untracked Dependency
Model Model callbacks

Referenced global workspace variables*
Global enumeration definitions*
Externally-saved model workspace variables (if auto-initialized)
Data or functions referenced in masks or callbacks inside the model
Known dependencies specified in the model reference rebuild options of a
configuration set
Simulation inputs and simulation outputs specified in model configuration
sets
Signal Editor scenarios
C code referenced in C Caller blocks
Code inside SIL (software-in-the-loop) blocks
Files associated with S-Functions
Code replacement libraries
Custom code
System Composer™ profiles or stereotypes

Test case MATLAB code in:

• Pre-load, post-load, clean-up, and assessment callbacks
• Custom criteria
External configurations
MATLAB test files

*If possible, use a Simulink Data Dictionary file instead. The digital thread tracks changes to data
dictionaries.

7 Troubleshooting and Limitations

7-4

Note If you do not want the build system or the Process Advisor app to run incremental builds, you
can disable incremental builds for a project. For more information, see the section "How to Disable
Incremental Builds".

You can also force up-to-date tasks to execute by using one of these approaches:

• In the Process Advisor app, either point to a task and click the run button or click Run All >
Force Run All.

• For the runprocess function, specify Force as true.

Note The build system and Process Advisor app are able to track the following test case
dependencies:

• Baseline files in .mat, .xlsm, .xlsb, .xlsx, .xls, and .mldatx format.
• Input files in .mat, .xlsm, .xlsb, .xlsx, and .xls format.
• Parameter override files in .mat, .xlsm, .xlsb, .xlsx, .xls, and .m format.

 Limitations on Incremental Build

7-5

Functions — Alphabetical List

The API includes the following functions:

Create, Access, and Run Process Model

Function Description
createprocess Create a process model
getprocess Get process model object for process model in

project
runprocess Run task iterations defined by the process model

Get Individual Task Iterations and Results from Process Model

Function Description
createProcessTaskID Generate an ID for a specific task iteration

defined by the process model
generateProcessTasks Generate a list of the IDs for the task iterations

defined by the process model
getProcessTaskResults Get available results and result details for task

iterations defined by the process model

Open Process Advisor App

Function Description
processadvisor Open the Process Advisor app for a specific

Simulink model
processAdvisorWindow Open the Process Advisor app for a MATLAB

project

The function reference pages are listed alphabetically on the following pages.

Tip You can also access API help from the MATLAB Command Window by using help function.

For example, this code returns help information for the function runprocess:

help runprocess

8

createprocess
Create process model

Syntax
processModelPath = createprocess()
processModelPath = createprocess(Name=Value)

Description
processModelPath = createprocess() creates a process model at the project root and returns
the path to the created process model. The process model is saved as processmodel.m.

By default, the process model is a default process model that can create a model-based design
pipeline. You can only call createprocess if you have a MATLAB project open.

processModelPath = createprocess(Name=Value) specifies the output process model using
one or more Name=Value arguments.

Examples

Create Process Model

Open a project that does not have a process model and copy the default process into the project.

Open an example MATLAB project, dashboardCCProjectStart, that does not have a process
model.

dashboardCCProjectStart

Create a process model for the project.

processModelPath = createprocess

createprocess copies the default process model into the project root and saves the path to the
process model to processModelPath.

Create a project object for the currently loaded project.

myProject = currentProject;

Add the process model file to the current project.

addFile(myProject,processModelPath)

Open the Process Advisor app in a standalone window to view the tasks associated with the project
and project artifacts.

processAdvisorWindow

8 Functions — Alphabetical List

8-2

Overwrite Process Model with Empty Process

Open a project and overwrite the process model with an empty process model.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

Use createprocess to overwrite the existing process model with an empty process model.

processModelPath = createprocess(Template="empty",Overwrite=true)

Open the created process model to view the commented-out example code.

open(processModelPath)

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: processModelPath = createprocess(Overwrite=true)

Template — Name of predefined process model template
"default" (default) | "empty"

Name of predefined process model template, specified as either:

• "default" — Process model file that includes several built-in tasks
• "empty" — Process model file that contains commented-out example code for adding built-in and

custom tasks

Example: "empty"
Data Types: char | string

Overwrite — Setting to overwrite existing process model
false or 0 (default) | true or 1

Setting to overwrite existing process model, specified as a numeric or logical 0 (false) or 1 (true).
Example: true
Data Types: logical

Output Arguments
processModelPath — Path to created process model
character vector

Path to created process model, returned as a character vector.

By default, createprocess creates a process model at the project root.

 createprocess

8-3

Alternative Functionality
App

If a project does not have a process model, you can use the Process Advisor app to create the
default process model. To open the Process Advisor app for a project, in the MATLAB Command
Window, enter:

processAdvisorWindow

When you open the Process Advisor app on a project that does not have a process model, the app
automatically creates a copy of the default process model at the root of the project.

Version History
Introduced in R2022a

8 Functions — Alphabetical List

8-4

createProcessTaskID
Generate ID for specific task iteration defined by process model

Syntax
ID = createProcessTaskID(task,artifact)

Description
ID = createProcessTaskID(task,artifact) generates the identifier, ID, for an individual task
iteration defined by the process model. A task iteration is the pairing of a task, task, to a specific
project artifact, artifact.

Examples

Run One Task on One Artifact

Suppose you have a process model with several tasks, but right now you only want to run the task
padv.builtin.task.RunModelStandards on the model AHRS_Voter.slx. Use the function
createProcessTaskID to generate the ID for a specific task iteration, then use the function
runprocess to run only that specific task iteration.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

Specify a task that exists in the process model. For this example, specify the built-in task for running
Model Advisor checks, padv.builtin.task.RunModelStandards.

task = padv.builtin.task.RunModelStandards;

Use padv.Artifact to specify the project artifact that you want the task to run on. For this
example, the artifact type is sl_model_file because the artifact is a Simulink model and the
address is the path to AHRS_Voter.slx, relative to the project root.

artifactType = "sl_model_file";
address = "02_Models/AHRS_Voter/specification/AHRS_Voter.slx";
artifact = padv.Artifact(artifactType,address);

Use the task instance and artifact to generate the ID for the specific task iteration.

runModelStandards_for_AHRS_Voter = createProcessTaskID(task,artifact)

runModelStandards_for_AHRS_Voter =

"padv.builtin.task.RunModelStandards|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx"

Use the function runprocess to run the task iteration.

runprocess(Tasks = runModelStandards_for_AHRS_Voter)

 createProcessTaskID

8-5

When you specify the Tasks value as the ID for a single task iteration, the function runprocess runs
only the specified task iteration. For this example, runprocess runs only the task iteration
associated with the task padv.builtin.task.RunModelStandards and the artifact
AHRS_Voter.slx.

Note You can only run task iterations that are already defined by the process model. For each task
iteration, the task must be a task that you added to the process model and the artifact must be an
artifact that you specified the task runs on.

For example, if the task myCustomTask is a task that runs once for each model in the project, you
cannot run using the ID "myCustomTask|project|ProcessAdvisorExample.prj" until you
specify, in the process model, that myCustomTask is a task that runs once for the project.

Input Arguments
task — Task name or subclass of padv.Task
string | character vector | padv.Task object

Either:

• Name of task, specified as a string or character vector. The name of a task is stored in the Name
property of the task. For example, "name_of_my_custom_task".

• Subclass of padv.Task, specified as a padv.Task object. Built-in tasks are subclasses of
padv.Task. For example, you can specify the padv.Task object
padv.builtin.task.RunModelStandards for the task argument.

Example: "name_of_my_custom_task"
Example: "padv.builtin.task.RunModelStandards"
Example: padv.builtin.task.RunModelStandards
Data Types: char | string

artifact — File in project
padv.Artifact object

File in project, specified as a padv.Artifact object.
Example: padv.Artifact("project","ProcessAdvisorExample.prj")
Example: padv.Artifact("sl_model_file", "02_Models/AHRS_Voter/specification/
AHRS_Voter.slx")

Output Arguments
ID — Identifier for task iteration defined by process model
string

Identifier for task iteration defined by the process model, returned as a string.

IDs take the form: "taskNameOrObject|fileType|relativePath", where relativePath is the
path relative to the project root.

Example IDs:

8 Functions — Alphabetical List

8-6

• "myCustomProjectTask|project|ProcessAdvisorExample.prj"
• "padv.builtin.task.RunModelStandards|sl_model_file|02_Models/AHRS_Voter/

specification/AHRS_Voter.slx"
• "padv.builtin.task.RunTestsPerTestCase|sl_test_case|ced877ff-

cfb8-4fa8-9bbf-aaa29b1d926b"

Alternative Functionality
App

You can also use the Process Advisor app to run individual task iterations in the process. To open
the Process Advisor app for a project, in the MATLAB Command Window, enter:

processAdvisorWindow

Version History
Introduced in R2022a

 createProcessTaskID

8-7

generateProcessTasks
Get list of IDs for task iterations in MBD pipeline

Syntax
IDs = generateProcessTasks()
IDs = generateProcessTasks(FilterArtifact=artifact)

Description
IDs = generateProcessTasks() returns identifiers, IDs, for each of the task iterations in the
model-based design (MBD) pipeline.

By default, generateProcessTasks returns an ID for each combination of tasks and associated
project artifacts in the MBD pipeline.

IDs = generateProcessTasks(FilterArtifact=artifact) filters the list of IDs in the MBD
pipeline to show only IDs for task iterations associated with a specific artifact, artifact.

Examples

List IDs for Each Task Iteration in MBD Pipeline

Suppose you have a process model that adds several tasks to the process. Use the function
generateProcessTasks to list the IDs for each task iteration in the MBD pipeline.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

List the IDs for each task iteration in the MBD pipeline.

IDs = generateProcessTasks()

Run Each Task Associated with an Artifact

Suppose you have a process model that adds several tasks to the process, but right now you only
want to run the tasks associated with one specific artifact. Use the function
generateProcessTasks, but filter the list of IDs to only include task iterations associated with a
specific model in the project, AHRS_Voter.slx.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

Use padv.Artifact to specify the project artifact that you want the task to run on. For this
example, the artifact type is sl_model_file because the artifact is a Simulink model and the
address is the path to AHRS_Voter.slx, relative to the project root.

8 Functions — Alphabetical List

8-8

artifactType = "sl_model_file";
address = "02_Models/AHRS_Voter/specification/AHRS_Voter.slx";
artifact = padv.Artifact(artifactType,address);

Get a list of the IDs for the task iterations in the MBD pipeline, but filter the list to include only task
iterations associated with the artifact AHRS_Voter.slx.

IDs_AHRS_Voter = generateProcessTasks(FilterArtifact=artifact);

Use the function runprocess to run only the task iterations associated with the artifact
AHRS_Voter.slx.

runprocess(Tasks=IDs_AHRS_Voter)

When you specify the Tasks value as a list of IDs for task iterations, the function runprocess runs
only the specified task iterations. For this example, runprocess runs only the task iterations
associated with the artifact AHRS_Voter.slx.

Note You can only run task iterations that are already defined in the process model. For each task
iteration, the task must be a task that you added to the process model and the artifact must be an
artifact that you specified the task runs on.

For example, if the task myCustomTask is a task that runs once for each model in the project, you
cannot run using the ID "myCustomTaskTask|project|ProcessAdvisorExample.prj" until you
specify, in the process model, that myCustomTask is a task that runs once for the project.

Input Arguments
artifact — File in project
padv.Artifact object

File in project, specified as a padv.Artifact object.
Example: padv.Artifact("project","ProcessAdvisorExample.prj")
Example: padv.Artifact("sl_model_file", "02_Models/AHRS_Voter/specification/
AHRS_Voter.slx")

Output Arguments
IDs — Identifiers for task iterations defined by process model
string

Identifiers for task iterations in the MBD pipeline, returned as a string.

IDs take the form: "taskNameOrObject|fileType|relativePath", where relativePath is the
path relative to the project root.

Example IDs:

• "myCustomProjectTask|project|ProcessAdvisorExample.prj"
• "padv.builtin.task.RunModelStandards|sl_model_file|02_Models/AHRS_Voter/

specification/AHRS_Voter.slx"

 generateProcessTasks

8-9

• "padv.builtin.task.RunTestsPerTestCase|sl_test_case|ced877ff-
cfb8-4fa8-9bbf-aaa29b1d926b"

Alternative Functionality
App

You can also use the Process Advisor app to run individual task iterations in the process or to view
task iterations for a specific model.

• To open the Process Advisor app for a project, in the MATLAB Command Window, enter:

processAdvisorWindow
• To open the Process Advisor app for a specific model, provide the name of the model,

modelName, to the function processadvisor:

processadvisor(modelName)

Version History
Introduced in R2022a

8 Functions — Alphabetical List

8-10

getprocess
Get process model object for process model in project

Syntax
processModelObject = getprocess()

Description
processModelObject = getprocess() returns a process model object, processModelObject,
for the process model in the project. You can use the process model object to view the properties of
the process model in the project. For more information, see the documentation for
"padv.ProcessModel" in the chapter "Classes — Alphabetical List".

If the current project does not have a process model, the function getprocess automatically creates
a new process model at the root of the project.

Examples

Find the Default Query for the Current Process

Use getprocess to find the default query that the current process model uses. If you have a task
that does not specify an iteration query, the default query defines which artifacts the process iterates
over. By default, custom tasks run once per project because the default query is
"padv.builtin.query.FindProjectFile".

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

Get the properties of the current process model.

currentProcessModelProperties = getprocess()

currentProcessModelProperties =

 ProcessModel with properties:

 TaskNames: ["padv.builtin.task.AnalyzeRefModelCode" …]
 QueryNames: ["padv.builtin.query.FindModels" …]
 DefaultQueryName: "padv.builtin.query.FindProjectFile"
 RootFileName: "processmodel.m"

Get the default query for the current process model.

defaultQuery = currentProcessModelProperties.DefaultQueryName

defaultQuery =

 "padv.builtin.query.FindProjectFile"

 getprocess

8-11

Suppose you want to override the default query for the current process model. Open the process
model and use the padv.ProcessModel object pm to specify a different default query. For this
example, change the default query to padv.builtin.query.FindModels by adding the following
line of code to the process model:

pm.DefaultQueryName = "padv.builtin.query.FindModels";

Now if you add a new custom task to the process model and do not specify an iteration query, the
custom task runs once for each model in the project.

Output Arguments
processModelObject — Properties of process model
padv.ProcessModel object

Properties of process model, returned as a padv.ProcessModel object.

The padv.ProcessModel object returns the names of the tasks, queries, default query, and root
process model file for the process.

Version History
Introduced in R2022a

8 Functions — Alphabetical List

8-12

getProcessTaskResults
Get available task results and result details for task iterations in MBD pipeline

Syntax
[IDsWithTaskResults,taskResults,taskResultsOutdated] =
getProcessTaskResults()

Description
[IDsWithTaskResults,taskResults,taskResultsOutdated] =
getProcessTaskResults() returns available task results and result details for the task iterations
in the MBD pipeline. The function returns the identifiers for task iterations that have task results,
IDsWithTaskResults, the current task results, taskResults, and a logical value that indicates if
the task results are outdated, taskResultsOutdated.

If you do not have task results, use the function runprocess to run tasks and generate results. The
function getProcessTaskResults only returns information related to task iterations that are
defined in the process model. If you have task results from a task iteration that is not in the process
model, the function does not return information related to those task results.

Examples

Get Output Artifacts from Task Results

Get the available task results for a task iteration and use the result details to find information about
the output artifacts of the task iteration.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

List the IDs for each task iteration in the MBD pipeline.

IDs = generateProcessTasks();

Run the first task iteration in the list.

runprocess(Tasks=IDs(1))

For this example, the build system runs the task
padv.builtin.task.GenerateSimulinkWebView for the model AHRS_Voter.slx.

Get the available task results and result details.

[IDsWithResults,results,outdated] = getProcessTaskResults()

IDsWithResults =

 "padv.builtin.task.GenerateSimulinkWebView|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx"

 getProcessTaskResults

8-13

results =

 TaskResult with properties:

 Status: Pass
 OutputArtifacts: [1×1 padv.Artifact]
 Details: [1×1 struct]
 ResultValues: [1×1 struct]

outdated =

 logical

 0

Get the output artifacts from the result. For this example, the result is a Simulink Web View for the
model AHRS_Voter.slx.

webView = results.OutputArtifacts

webView =

 Artifact with properties:

 Type: "padv_output_file"
 Parent: [0×0 padv.Artifact]
 Address: "04_Results/AHRS_Voter/webview/AHRS_Voter_webview/AHRS_Voter_webview.html"
 UUID: "6b37eb48-d694-4daf-a5dd-024a4bf2348c"
 Label: [0×0 string]
 StorageAddress: [0×0 string]

Output Arguments
IDsWithTaskResults — Identifiers for task iterations that have task results and are
defined in process model
string | string array

Identifiers for task iterations that have task results and are defined in the process model, returned as
a string or string array.

• If you do not have task results for task iterations in your process model, IDsWithTaskResults
returns an empty array, []. You can use the function runprocess to run tasks and generate
results.

• If you have task results for task iterations that are not in your process model,
IDsWithTaskResults returns an empty array, [].

• If you have task results for task iterations that are in your process model, IDsWithTaskResults
returns the IDs for the task iterations that have task results.

IDs take the form: "taskNameOrObject|fileType|relativePath", where relativePath is the
path relative to the project root.

Example IDs:

8 Functions — Alphabetical List

8-14

• "myCustomProjectTask|project|ProcessAdvisorExample.prj"
• "padv.builtin.task.RunModelStandards|sl_model_file|02_Models/AHRS_Voter/

specification/AHRS_Voter.slx"
• "padv.builtin.task.RunTestsPerTestCase|sl_test_case|ced877ff-

cfb8-4fa8-9bbf-aaa29b1d926b"

taskResults — Results for task iterations
padv.TaskResult | padv.TaskResult array

Results for task iterations, returned as a padv.TaskResult or padv.TaskResult array.

• If you do not have task results for task iterations in your process model, taskResults returns an
empty array, [].

• If you have task results for task iterations that are not in your process model, taskResults
returns an empty array, [].

• If you have task results for task iterations that are in your process model, taskResults returns a
padv.TaskResult or padv.TaskResult array.

padv.TaskResult objects contain properties for the result status, output artifacts, details, and
result values for the number of passing, warning, and failing results for task iterations.

taskResultsOutdated — Whether task results are outdated or up-to-date
logical | logical array

Status of task results, returned as a logical value or logical array. Values of 1 indicate that the results
for the task iteration are outdated and may not reflect the current state of the project or task. Values
of 0 indicate that the results for the task iteration are up-to-date. The result is an empty array, [],
when there are not task results.

Version History
Introduced in R2022a

 getProcessTaskResults

8-15

processadvisor
Open Process Advisor app for Simulink model

Syntax
processadvisor(modelName)

Description
processadvisor(modelName) opens the Simulink model, modelName, in the current project and
opens a Process Advisor pane to the left of the Simulink canvas.

You need to load a MATLAB project to use the function processadvisor.

Examples

Open Process Advisor for Model in Project

Open the Process Advisor app for a specific model in a project.

Open the Process Advisor example project, which contains an example model AHRS_Voter.slx.

processAdvisorExampleStart

Open the Process Advisor app for the model AHRS_Voter.slx.

processadvisor("AHRS_Voter")

The AHRS_Voter model opens in Simulink and the Process Advisor app opens in a pane to the left
of the Simulink canvas. You can use the Process Advisor app to run the tasks in your process.

Input Arguments
modelName — Model name
character vector | string

Model name, specified as a character vector or string.

Do not include the model extension (.slx or .mdl) in the model name.
Example: "AHRS_Voter"
Data Types: char | string

Alternative Functionality
App

You can also open the Process Advisor app for a model by using the Apps Gallery.

8 Functions — Alphabetical List

8-16

1 Open a Simulink model in your project.
2 Click the Apps tab.
3 In the Model Verification, Validation, and Test section, click Process Advisor.

Version History
Introduced in R2022a

 processadvisor

8-17

processAdvisorWindow
Open Process Advisor app for project

Syntax
processAdvisorWindow()

Description
processAdvisorWindow() opens the Process Advisor app for the current project. The app opens
in a standalone window.

Examples

Open Process Advisor app for Project

Open the Process Advisor app for a MATLAB project.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

Open the Process Advisor app for the project.

processAdvisorWindow()

The standalone Process Advisor window shows each of the task iterations in the project, organized
by task. In the Task column, the table shows each task and the artifacts that the task iterates over.
You can double-click on an artifact name to open the artifact. For example, if you double-click on the
name of a test case, the test case opens in Test Manager.

Alternative Functionality
App

You can also open the Process Advisor app for a project directly from the Project tab in MATLAB.

On the Project tab, in the Tools gallery, click Process Advisor.

Version History
Introduced in R2022a

8 Functions — Alphabetical List

8-18

runprocess
Generate and run model-based design (MBD) pipeline using build system

Syntax
[buildResult,exitCode] = runprocess()
[buildResult,exitCode] = runprocess(Name=Value)

Description
[buildResult,exitCode] = runprocess() generate a model-based design (MBD) pipeline and
run the pipeline using the build system. The process model, processmodel.m, in the project defines
the tasks for the pipeline.

[buildResult,exitCode] = runprocess(Name=Value) specifies how the MBD pipeline runs
using one or more Name=Value arguments.

Examples

Run MBD Pipeline

Open a project and use runprocess to generate and run the MBD pipeline using the build system.

Open the Process Advisor example project, which contains an example process model. The process
model defines the tasks for the pipeline.

processAdvisorExampleStart

Generate and run the MBD pipeline and store the results in the variable results.

results = runprocess()

Run Specific Task Iteration, Clean Task Results, and Delete Task Outputs

Open a project and run one specific task iteration in the pipeline.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

Get a list of the task iterations in the MBD pipeline.

tasks = generateProcessTasks;

Force runprocess to run one of the task iterations by specifying Force as true and Tasks as one
of the tasks in tasks.

runprocess(Force=true,Tasks=tasks(1))

 runprocess

8-19

When Force is true, runprocess runs the pipeline, even if the pipeline already had results that
were marked as up-to-date.

Clean task results and delete task outputs.

runprocess(Clean=true,DeleteOutputs=true)

When you clean task results and delete task outputs, it is as if the tasks were not run.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: [buildResult,exitCode] = runprocess(Force=true)

Tasks — List of task iteration IDs
{} (default) | character vector | cell array of character vectors | string | string array

List of task iteration IDs that you want to call runprocess on, specified as a character vector, cell
array of character vectors, string, or string array. A task iteration is the pairing of a task to a specific
project artifact. By default, runprocess acts on each task iteration in the project.

You can find task iteration IDs by using one of the following approaches:

• Call the function generateProcessTasks to create a list of IDs for each task iteration in the
pipeline.

taskIterationIDs = generateProcessTasks
• Use the function createProcessTaskID to create the ID for a specified task and project artifact.

For example, suppose you want the ID for running the built-in task
padv.builtin.task.GenerateSimulinkWebView on a model, modelName.slx, in the folder
modelsFolder in the project.

taskName = "padv.builtin.task.GenerateSimulinkWebView";
artifactType = "sl_model_file";
relativePath = "modelsFolder/modelName.slx"
artifact = padv.Artifact(artifactType,relativePath);
taskIterationID = createProcessTaskID(taskName, artifact)

taskIterationID =
"padv.builtin.task.GenerateSimulinkWebView|sl_model_file|modelsFolder/modelName.slx"

IDs take the form: "taskName|fileType|relativePath", where relativePath is the path
relative to the project root.

Example IDs:

• "myCustomProjectTask|project|ProcessAdvisorExample.prj"
• "padv.builtin.task.RunModelStandards|sl_model_file|02_Models/AHRS_Voter/

specification/AHRS_Voter.slx"
• "padv.builtin.task.RunTestsPerTestCase|sl_test_case|ced877ff-

cfb8-4fa8-9bbf-aaa29b1d926b"

8 Functions — Alphabetical List

8-20

Note You can only run task iterations that are already defined in the process model. For each task
iteration, the task must be a task that you added to the process model and the artifact must be an
artifact that you specified the task runs on.

For example, if the task myCustomTask is a task that runs once for each model in the project, you
cannot run using the ID "myCustomTaskTask|project|ProcessAdvisorExample.prj" until you
specify, in the process model, that myCustomTask is a task that runs once for the project.

Example: "padv.builtin.task.GenerateSimulinkWebView|sl_model_file|modelsFolder/
modelName.slx"

Example: ["padv.builtin.task.GenerateSimulinkWebView|sl_model_file|
modelsFolder/modelName.slx","padv.builtin.task.GenerateSimulinkWebView|
sl_model_file|modelsFolder/otherModel.slx"]

Data Types: char

Force — Setting to skip or run up-to-date task iterations
false or 0 (default) | true or 1

Setting to skip or run up-to-date tasks, specified as a numeric or logical 0 (false) or 1 (true). By
default, runprocess does not run task iterations that have up-to-date results.
Example: true
Data Types: logical

Isolation — Setting to include or ignore task dependencies
false or 0 (default) | true or 1

Setting to include or ignore task dependencies, specified as a numeric or logical 0 (false) or 1
(true). By default, runprocess includes task dependencies when running a task. Specify
Isolation as true if you want to run a task in isolation, without running any task dependencies.

Note that you define task dependencies in the process model by using the function dependsOn.
Example: true
Data Types: logical

Clean — Clear task results and delete outputs
false or 0 (default) | true or 1

Setting to clean task results and outputs, specified as a numeric or logical 0 (false) or 1 (true).

Note that if you specify Clean as true, runprocess ignores other name-value arguments and
cleans the task results and output.

Note If you specify Clean as true, then you cannot specify MarkStale as true. The arguments are
mutually exclusive.

Example: true
Data Types: logical

 runprocess

8-21

DeleteOutputs — Setting to delete task outputs
false or 0 (default) | true or 1

Setting to delete task outputs, specified as a numeric or logical 0 (false) or 1 (true).

Note To delete task outputs with DeleteOutputs, you must specify Clean as true.

Example: true
Data Types: logical

MarkStale — Setting to mark task as outdated
false or 0 (default) | true or 1

Setting to mark task as outdated, specified as a numeric or logical 0 (false) or 1 (true). When you
mark a task as stale, the results appear outdated in the Process Advisor app.

Note If you specify MarkStale as true, then you cannot specify Clean as true. The arguments are
mutually exclusive.

Example: true
Data Types: logical

ExitInBatchMode — Setting to exit MATLAB when running in batch mode
true or 1 (default) | false or 0

Setting to exit MATLAB when running in batch mode, specified as a numeric or logical 1 (true) or 0
(false). By default, if you are running MATLAB in batch mode and runprocess finishes running,
runprocess exits MATLAB.

The process exit codes are:

• 0 if the Status of buildResult is PASS
• 1 if the Status of buildResult is ERROR
• 2 if the Status of buildResult is FAIL

For example, suppose you want to run tasks and generate a report in batch mode. You would need to
specify ExitInBatchMode as false and use the exitCode returned by runprocess to exit:

[buildResult, exitCode] = runprocess(ExitInBatchMode=false);
rptObj = padv.ProcessAdvisorReportGenerator();
generateReport(rptObj);
exit(exitCode);

Otherwise, the function runprocess would automatically exit MATLAB before the report can
generate.
Example: false
Data Types: logical

8 Functions — Alphabetical List

8-22

RerunFailedTasks — Setting to ignore or rerun failed task iterations
false or 0 (default) | true or 1

Setting to ignore or rerun failed task iterations, specified as a numeric or logical 0 (false) or 1
(true). runprocess considers failed task iterations as outdated and reruns the task iterations.
Example: true
Data Types: logical

RerunErroredTasks — Setting to ignore or rerun errored task iterations
false or 0 (default) | true or 1

Setting to ignore or rerun errored task iterations, specified as a numeric or logical 0 (false) or 1
(true). runprocess considers task iterations with errors as outdated and reruns the task iterations.
Example: true
Data Types: logical

RefreshProcessModel — Setting to automatically refresh before running tasks
true or 1 (default) | false or 0

Setting to automatically refresh before running tasks, specified as a numeric or logical 1 (true) or 0
(false). By default, runprocess refreshes before running tasks so that the run uses the current
state of the process model and project. If you specify RefreshProcessModel as false,
runprocess does not refresh before running, but the run may not include the latest changes to tasks
in the process model or artifacts in the project.
Example: false
Data Types: logical

ReanalyzeProjectAnalysisIssues — Automatically reanalyze project analysis issues that
have severity level of error
true or 1 (default) | false or 0

Automatically reanalyze project analysis issues that have a severity level of error, specified as a
numeric or logical 1 (true) or 0 (false).

If you are using R2022b Update 1 or later, you can specify ReanalyzeProjectAnalysisIssues as
false to prevent the build system from reanalyzing project analysis issues that have a severity level
of error. This may reduce the execution time for runprocess, but the build system may not generate
the expected task iterations or detect outdated results.

Fix the issues listed in the Project Analysis Issues pane of the Process Advisor app to make sure
the build system can fully analyze the project, generate the expected task iterations, and detect
outdated results.
Example: false
Data Types: logical

Output Arguments
buildResult — Results of run
padv.BuildResult

 runprocess

8-23

Results of run, returned as a padv.BuildResult object.

The padv.BuildResult object includes:

• The start time and end time of the run
• The status of the run (Pass,Error,Fail)
• Lists of the tasks that the passed, errored, were skipped, or failed during the run
• Input arguments to the run

exitCode — Exit code from run
0 | 1 | 2

Exit code from run, returned as a double representing the process error code.

• 0 if the Status of buildResult is Pass
• 1 if the Status of buildResult is Error
• 2 if the Status of buildResult is Fail

Alternative Functionality
App

You can also use the Process Advisor app to run each task or individual task iterations in the
process. To open the Process Advisor app for a project, in the MATLAB Command Window, enter:

processAdvisorWindow

Version History
Introduced in R2022a

8 Functions — Alphabetical List

8-24

Classes — Alphabetical List

The API includes the following classes:

Class Object Functions Description
padv.Artifact None Store artifact information
padv.BuildResult None Result from build system build
padv.Preferences None Set runprocess function

settings
padv.ProcessModel • reset

• reload
• addTask
• addQuery
• findQuery
• findTask
• exists

Define tasks and process for
project

padv.Query • run Select set of artifacts from
project

padv.Task • run
• dependsOn
• runsAfter
• addInputQueries

Single step in process

padv.TaskResult • pass
• fail
• error
• applyStatus

Create and access results from
task

The class reference pages are listed alphabetically on the following pages.

Tip You can also access API help from the MATLAB Command Window by using help function.

For example, this code returns help information for the class padv.Task:

help padv.Task

9

padv.Artifact
Store artifact information

Description
A padv.Artifact object represents an artifact that you can run a task on in the process that you
define in your process model. You can use a padv.Artifact to specify a specific project artifact that
you want a task to run on. Use a padv.Artifact object as an input to the function
createProcessTaskID when you want to get the ID for a specific task iteration. A task iteration is
the pairing of a task to a specific project artifact.

Creation

Syntax
Description

artifactObject = padv.Artifact(artifactType,relativePath) stores artifact information
in a padv.Artifact object, artifactObject. You can use the artifact information when you want
to get the ID for a specific task iteration.

artifactObject = padv.Artifact(___ ,Name=Value) specifies the artifact using one or more
Name=Value arguments.

Input Arguments

artifactType — Type of artifact
string

Type of artifact, specified as a string.

Valid artifact types include:

• "sl_model_file" — Simulink model file
• "sl_test_case" — Simulink Test test case
• "project" — MATLAB project

Example: "project"
Data Types: string

relativePath — Address of artifact
string

Address of artifact, specified as a string. The address of the artifact is the path to the artifact, relative
to the project root.
Example: "02_Models/AHRS_Voter/specification/AHRS_Voter.slx"

9 Classes — Alphabetical List

9-2

Data Types: string

Properties
Type — Type of artifact
string

Type of artifact, specified as a string.

Valid artifact types include:

• "sl_model_file" — Simulink model file
• "sl_test_case" — Simulink Test test case
• "project" — MATLAB project

Example: "project"
Data Types: string

Parent — Reference to parent artifact
empty padv.Artifact object (default) | padv.Artifact object

Reference to parent artifact, specified as a padv.Artifact object.

Address — Address of artifact
string

Address of artifact, specified as a string. The address of the artifact is the path to the artifact, relative
to the project root.
Example: "02_Models/AHRS_Voter/specification/AHRS_Voter.slx"
Data Types: string

UUID — Universal unique identifier
empty string (default) | string

Universal unique identifier, specified as a string.

Label — Human-readable name for artifact
empty string (default) | string

Human-readable name for the artifact, specified as a string.

StorageAddress — Address for sub-file artifact
empty string (default) | string

Address for a sub-file artifact, specified as a string.

Examples

Run One Task on One Artifact

Suppose you have a process model with several tasks, but right now you only want to run the task
padv.builtin.task.RunModelStandards on the model AHRS_Voter.slx. Use the function

 padv.Artifact

9-3

createProcessTaskID to get the ID for a specific task iteration, then use the function runprocess
to run only that specific task iteration.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

Use padv.Artifact to specify the project artifact that you want the task to run on. For this
example, the artifact type is sl_model_file because the artifact is a Simulink model and the
address is the path to AHRS_Voter.slx, relative to the project root.

artifactType = "sl_model_file";
address = "02_Models/AHRS_Voter/specification/AHRS_Voter.slx";
artifact = padv.Artifact(artifactType,address);

You can use the padv.Artifact object, artifact, as an input to functions like:

• generateProcessTasks — Find the IDs for each task iteration associated with an artifact

IDs_AHRS_Voter = generateProcessTasks(FilterArtifact=artifact);
• createProcessTaskID — Find the ID for a specific task iteration

task = padv.builtin.task.RunModelStandards;
runModelStandards_for_AHRS_Voter = createProcessTaskID(task,artifact)

You can then use the function runprocess to run the task iterations.

• runprocess(Tasks=IDs_AHRS_Voter)

• runprocess(Tasks = runModelStandards_for_AHRS_Voter)

Version History
Introduced in R2022a

9 Classes — Alphabetical List

9-4

padv.BuildResult
Result from build system build

Description
Use the build result, padv.BuildResult, to find the properties of the build system build, including a
list of the tasks that the build system ran and the settings the build system used.

Creation

Syntax
Description

buildResultObj = padv.BuildResult() stores the results from a build system build.

Properties
StartTime — Start time of build
[0×0 datetime] (default) | datetime

Start time of build, returned as datetime.
Example: 09-Aug-2022 14:32:05
Data Types: datetime

EndTime — End time of build
[0×0 datetime] (default) | datetime

End time of build, returned as datetime.
Example: 09-Aug-2022 14:32:37
Data Types: datetime

Status — Overall status for build
Pass (default) | Fail | Error

Overall status for build, returned as the padv.TaskStatus enumeration value:

• Error if any task iteration in the build returns an error.
• Fail if no task iterations in the build return an error, but at least one task iteration fails.
• Pass if no task iterations were run, or if no task iterations in the build return an error or fail.

Example: Pass

ResultValues — Task iteration result values
[1×1 struct] (default) |

 padv.BuildResult

9-5

Task iteration result values, returned as a structure array with fields:

• Pass
• Warn
• Fail

For example, if the build runs one task iteration and the task iteration returns one passing result and
five warning results, the structure array contains:

 struct with fields:

 Pass: 1
 Warn: 5
 Fail: 0

Data Types: struct

PassTasks — IDs for task iterations that passed during the build
[] (default) | cell array

IDs for task iterations that passed during the build, returned as a cell array.

If the build system runs one task iteration and the task iteration passes, PassTasks returns a one-
dimensional cell array. For example, if the build system only ran the task
padv.builtin.task.GenerateCodeAsRefModel on the model AHRS_Voter.slx and the task
iteration passed, PassTasks returns:

{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx'}

If multiple task iterations pass, PassTasks returns one cell for each task iteration that passed. For
example:

{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx' }
{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/Actuator_Control/specification/Actuator_Control.slx' }
{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/Flight_Control/specification/Flight_Control.slx' }
{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/InnerLoop_Control/specification/InnerLoop_Control.slx'}
{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/OuterLoop_Control/specification/OuterLoop_Control.slx'}

Data Types: cell

ErrorTasks — IDs for task iterations that returned an error during the build
[] (default) | cell array

IDs for task iterations that returned an error during the build, returned as a cell array.

If the build system runs one task iteration and the task iteration returns an error, ErrorTasks
returns a one-dimensional cell array. For example, if the build system tried to run a custom task,
customTask, on the model AHRS_Voter.slx, but the task iteration returned an error, ErrorTasks
returns:

{'customTask|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx'}

If multiple task iterations error, ErrorTasks returns one cell for each task iteration that returned an
error. For example:

{'customTask|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx' }
{'customTask|sl_model_file|02_Models/Actuator_Control/specification/Actuator_Control.slx' }

9 Classes — Alphabetical List

9-6

{'customTask|sl_model_file|02_Models/Flight_Control/specification/Flight_Control.slx' }
{'customTask|sl_model_file|02_Models/InnerLoop_Control/specification/InnerLoop_Control.slx'}
{'customTask|sl_model_file|02_Models/OuterLoop_Control/specification/OuterLoop_Control.slx'}

Data Types: cell

SkippedTasks — IDs for task iterations that the build system skipped
[] (default) | cell array

IDs for task iterations that the build system skipped, returned as a cell array. The build system skips
task iterations that already have up-to-date results, unless you specify Force as true when you call
the function runprocess.

If the build system skips one task iteration, SkippedTasks returns a one-dimensional cell array. For
example, if you instructed the build system to run the task
padv.builtin.task.GenerateCodeAsRefModel on the model AHRS_Voter.slx, but the task
iteration already had up-to-date results, SkippedTasks returns:

{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx'}

If the build system skips multiple task iterations, SkippedTasks returns one cell for each task
iteration that the build system skipped. For example:

{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx' }
{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/Actuator_Control/specification/Actuator_Control.slx' }
{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/Flight_Control/specification/Flight_Control.slx' }
{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/InnerLoop_Control/specification/InnerLoop_Control.slx'}
{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/OuterLoop_Control/specification/OuterLoop_Control.slx'}

Data Types: cell

FailedTasks — IDs for task iterations that failed during the build
[] (default) | cell array

IDs for task iterations that failed during the build, returned as a cell array.

If the build system runs only one task iteration and the task iteration fails, FailedTasks returns a
one-dimensional cell array. For example, if the build system ran the task
padv.builtin.task.GenerateCodeAsRefModel on the model AHRS_Voter.slx and the task
iteration failed, FailedTasks returns:

{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx'}

If multiple task iterations fail, FailedTasks returns one cell for each task iteration that failed. For
example:

{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx' }
{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/Actuator_Control/specification/Actuator_Control.slx' }
{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/Flight_Control/specification/Flight_Control.slx' }
{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/InnerLoop_Control/specification/InnerLoop_Control.slx'}
{'padv.builtin.task.GenerateCodeAsRefModel|sl_model_file|02_Models/OuterLoop_Control/specification/OuterLoop_Control.slx'}

Data Types: cell

InputArgs — Input arguments that defined how the build system ran the build
[1×1 struct] (default) | structure array

 padv.BuildResult

9-7

Input arguments that defined how the build system ran the build, returned as a structure array with
fields:

• TasksToBuild — List of task iteration IDs that you want the build system to run
• Isolation — Setting to include or ignore task dependencies
• Force — Setting to skip or run up-to-date task iterations
• RerunFailedTasks — Setting to ignore or rerun failed task iterations
• RerunErroredTasks — Setting to ignore or rerun task iterations that returned an error

For example, the InputArgs for a build result could return:

 struct with fields:

 TasksToBuild: [1×5 string]
 Isolation: 0
 Force: 0
 RerunFailedTasks: 0
 RerunErroredTasks: 0

For more information, see the function runprocess.
Data Types: struct

Examples

Get List of Passed Task Iterations and Build Settings

Open a project, run a build, and use the build result, padv.BuildResult, to get a list of the passed
task iterations and the settings that the build system used when running the build.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

Generate a list of the tasks defined by the process model.

tasks = generateProcessTasks;

Run the first five task iterations in tasks and specify Force as true.

buildResult = runprocess(Force=true,Tasks=tasks(1:5))

Use the build result, buildResult, to get a list of the task iterations that passed.

passed = buildResult.PassTasks'

passed =

 5×1 cell array

 {'padv.builtin.task.GenerateSimulinkWebView|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx' }
 {'padv.builtin.task.GenerateSimulinkWebView|sl_model_file|02_Models/Actuator_Control/specification/Actuator_Control.slx' }
 {'padv.builtin.task.GenerateSimulinkWebView|sl_model_file|02_Models/Flight_Control/specification/Flight_Control.slx' }
 {'padv.builtin.task.GenerateSimulinkWebView|sl_model_file|02_Models/InnerLoop_Control/specification/InnerLoop_Control.slx'}
 {'padv.builtin.task.GenerateSimulinkWebView|sl_model_file|02_Models/OuterLoop_Control/specification/OuterLoop_Control.slx'}

9 Classes — Alphabetical List

9-8

When you used the function runprocess, you specified Force as true. You can see that information
in the InputArgs property of the build result, buildResult.

runprocessInputs = buildResult.InputArgs

runprocessInputs =

 struct with fields:

 TasksToBuild: ["padv.builtin.task.GenerateSimulinkWebView|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx" …]
 Isolation: 0
 Force: 1
 RerunFailedTasks: 0
 RerunErroredTasks: 0

The build result shows that the Force setting was 1 (true) when the build system ran.

Version History
Introduced in R2022a

 padv.BuildResult

9-9

padv.Preferences
Set runprocess function settings

Description
Use the preferences, padv.Preferences, to specify how the function runprocess runs. To specify
the preferences for a specific project, create a startup script for the project and specify the property
values for the global preferences object.

Creation

Syntax
Description

P = padv.Preferences() gets the handle to the global preferences object, P. There is only one set
of preference properties.

Preferences are not persistent. If you restart MATLAB or call clear classes, the preference
properties reset to the default values.

Properties
GarbageCollectTaskOutputs — Setting for automatically cleaning task results for tasks
and artifacts that do not match current process model or project
true or 1 (default) | false or 0

Setting for automatically cleaning task results for tasks and artifacts that do not match current
process model or project, specified as a numeric or logical 1 (true) or 0 (false).

By default, when you use the build system, the build system cleans task results that are no longer
relevant for the current process model or project. For example, if you had task results from a specific
task and then you remove that task from the process model, the build system automatically deletes
the task results associated with the task. If you had task results associated with a specific project
artifact and then you removed that artifact from the project, the build system automatically deletes
the task results associated with the artifact. Note that the build system does not delete generated
artifacts like generated code.

If you specify GarbageCollectTaskOutputs as false, the build system does not automatically
clean task results associated with tasks and artifacts that are not in the current process model or
project.
Example: false
Data Types: logical

ShowDetailedErrorMessages — Setting to show more information in error messages
false or 0 (default) | true or 1

9 Classes — Alphabetical List

9-10

Setting to show more information in error messages, specified as a numeric or logical 0 (false) or 1
(true).

By default, error messages from the build system are not verbose.

If you specify ShowDetailedErrorMessages as true, the build system shows full stack traces in
error messages. You may want to see full stack traces when you are debugging a process model.
Example: true
Data Types: logical

TrackProcessModel — Setting for tracking changes to process model
true or 1 (default) | false or 0

Setting for tracking changes to process model, specified as a numeric or logical 1 (true) or 0
(false).

By default, if you make a change to the process model file, processmodel.m, the build system marks
each task status and task result as outdated because the tasks in the updated process model might
not match the tasks that generated the task results from the previous version of the process model.
For example, if you ran the built-in task padv.builtin.task.RunModelStandards with the
default Model Advisor configuration, updated the process model to specify a different Model Advisor
configuration file for the task, and then ran the task again, the task results are now outdated because
they are the task results from the default configuration.

If you specify TrackProcessModel as false and make a change to the process model, the build
system will not mark the task statuses and task results as outdated.
Example: false
Data Types: logical

Examples

Specify Preferences for Builds

Use padv.Preferences to specify preferences for the Process Advisor app and build system.

Create a padv.Preferences object.

PREF = padv.Preferences

PREF =

 Preferences with properties:

 GarbageCollectTaskOutputs: 1
 ShowDetailedErrorMessages: 0
 TrackProcessModel: 1
 IncrementalBuild: 1

Specify IncrementalBuild as 0.

PREF.IncrementalBuild = 0;

 padv.Preferences

9-11

Now, when you run tasks in the current MATLAB session, incremental builds are disabled and the
build system forces tasks to run, even if the tasks have up to date results.

Version History
Introduced in R2022a

9 Classes — Alphabetical List

9-12

padv.ProcessModel
Define tasks and process for project

Description
A padv.ProcessModel object represents the process model that defines the tasks and process for a
project. A task performs an action and is a single step in your process. A process is a series of tasks
that run in a specific order. The process model defines the tasks that you can perform on the project,
and the order and relationships between tasks in the process. You can use tasks and queries to
dynamically perform actions and find artifacts in the project. Use the addTask object function to add
tasks to the process model. You can use the function runprocess to run the tasks defined in the
process model.

Creation
Syntax
pm = padv.ProcessModel()

Description

pm = padv.ProcessModel() creates an empty process model object, pm.

Properties
TaskNames — Tasks added to process model object
[1×0 string] (default) | string array

Tasks added to process model object, returned as string array.

Use the object function addTask to add a task instance to a process model.
Example: ["padv.builtin.task.GenerateSimulinkWebView"
"padv.builtin.task.RunModelStandards"]

Data Types: string

QueryNames — Queries added to process model object
[1×0 string] (default) | string array

Queries added to process model object, returned as string array.

Use the object function addQuery to add a query instance to a process model.
Example: ["padv.builtin.query.FindModels" "padv.builtin.query.FindProjectFile"]
Data Types: string

DefaultQueryName — Default query for tasks added to process model object
"padv.builtin.query.FindProjectFile" (default) | name of padv.Query query

 padv.ProcessModel

9-13

Default query for tasks added to process model, specified as the name of a padv.Query query.
Example: "padv.builtin.query.FindModels"
Data Types: string

RootFileName — Name of process model file
"processmodel.m" (default) | string

Name of process model file, specified as a string.
Data Types: string

Object Functions
reset Removes tasks and queries from process model

pm = padv.ProcessModel();
reset(pm);

reload Load process model by executing
processmodel.m file for project

pm = padv.ProcessModel();
reload(pm);

addTask Add task instance to process model

For information, see
"padv.ProcessModel.addTask".

addQuery Add query instance to process model

For information, see
"padv.ProcessModel.addQuery".

findQuery Find query instance by name

pm = padv.ProcessModel();
QUERY = findQuery(pm,...
"padv.builtin.query.FindModels")

findTask Find task instance by name

pm = padv.ProcessModel();
TASK = findTask(pm,...
"padv.builtin.task.RunModelStandards");

exists Check if process model exists for project

[FOUND, PATH] = padv.ProcessModel.exists()

Examples

Add Tasks to Process Model Object

You can use the object function addTask to add the tasks to a padv.ProcessModel object.

Open the Process Advisor example project.

9 Classes — Alphabetical List

9-14

processAdvisorExampleStart

The model AHRS_Voter opens with the Process Advisor pane to the left of the Simulink canvas.

In the Process Advisor pane, click the Edit process model button to open the processmodel.m
file for the project.

Replace the contents of the processmodel.m file with this code:

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 addTask(pm,"taskA");
 addTask(pm,"taskB");

end

The function addTask adds the task objects to the padv.ProcessModel object.

Use the function getprocess to get the process model object for the project.

pm = getprocess;

Get the task object for "taskA" defined in the current process model.

taskAObj = findTask(pm, "taskA");

taskAObj is a padv.Task object that you can use to view the properties of the task "taskA".

Version History
Introduced in R2022a

 padv.ProcessModel

9-15

padv.ProcessModel.addQuery
Package: padv

Add query instance to process model

Syntax
queryObj = addQuery(pm,queryNameOrInstance)
queryObj = addTask(___ ,Name=Value)

Description
queryObj = addQuery(pm,queryNameOrInstance) adds the query specified by
queryNameOrInstance to the process model. You can access the query using the query object
queryObj.

queryObj = addTask(___ ,Name=Value) specifies the properties of the query using one or more
Name=Value arguments.

Examples

Input Arguments
pm — Process for project
padv.ProcessModel object (default) |

Process for project, specified as a padv.ProcessModel object.
Example: pm = padv.ProcessModel

queryNameOrInstance — Name or instance of query
string | padv.Query object

Name or instance of a query, specified as a string or padv.Query object.
Example: "NameOfMyQuery"
Example: padv.builtin.query.FindModels

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:

9 Classes — Alphabetical List

9-16

DefaultArtifactType — Artifact type returned by query
"padv_output_file" (default) | valid value for the Type property of a padv.Artifact object

Artifact type returned by the query, specified as a valid value for the Type property of a
padv.Artifact object.
Example: DefaultArtifactType = "sl_model_file"

Title — Human readable name
Name property of query (default) | string

Human readable name for the query, specified as a string. By default, the Title property of the
query is the same as the Name.
Example: "My Query"
Data Types: string

FunctionHandle — Handle to function that runs when you run query object
[] (default) | function_handle

Handle to function that runs when you run query object, specified as a function_handle.

When you call the run function on a query object, run runs the function specified by the
function_handle.
Example: FunctionHandle = @FunctionForQuery
Data Types: function_handle

Parent — Initial query run before iteration query
[0×0 string] (default) | padv.Query object | Name of padv.Query object

Initial query run before iteration query, specified as either a padv.Query object or the Name of a
padv.Query object. When you specify a padv.Query object as the iteration query for a task, the
Parent query is the initial query that the build system runs before running the specified iteration
query.

For example, the built-in querypadv.builtin.query.FindModelsWithTestCases has the
Parent query padv.builtin.query.FindModels. If you specify
padv.builtin.query.FindModelsWithTestCases as the iteration query for a task, you are
specifying that you want the task to run once for each model with a test case. The build system runs
the Parent query padv.builtin.query.FindModels first, to find the models in the project, and
then the build system runs the iteration query padv.builtin.query.FindModelsWithTestCases
to find the models with test cases.

The build system ignores the Parent query when you specify a query as an input query or
dependency query for a task.
Example: "padv.builtin.query.FindModels"

SortArtifacts — Setting for automatically sorting artifacts by address
true or 1 (default) | false or 0

Setting for automatically sorting artifacts by address, specified as a numeric or logical 1 (true) or 0
(false). When a query returns artifacts, the artifacts should be in a consistent order. By default, the
build system sorts artifacts by the artifact address.

 padv.ProcessModel.addQuery

9-17

Alternatively, you can sort artifacts in a different order by overriding the internal sortArtifacts
method in a subclass that defines a custom sort behavior. The build system automatically calls the
sortArtifacts method when using the process model. The sortArtifacts method expects two
input arguments: a padv.Query object and a list of padv.Artifact objects returned by the run
function. The sortArtifacts method should return a list of sorted padv.Artifact objects.
Example: SortArtifacts = false
Data Types: logical

Output Arguments
queryObj — Query object
padv.Query object

Query object, returned as a padv.Query object.

For more information, see the documentation for "padv.Query" in the chapter "Classes — Alphabetical
List".

Version History
Introduced in R2022a

9 Classes — Alphabetical List

9-18

padv.ProcessModel.addTask
Package: padv

Add task instance to process model

Syntax
taskObj = addTask(pm,taskNameOrInstance)
taskObj = addTask(___ ,Name=Value)

Description
taskObj = addTask(pm,taskNameOrInstance) adds the task specified by
taskNameOrInstance to the process model. You can access the task using the task object taskObj.

taskObj = addTask(___ ,Name=Value) specifies the properties of the task using one or more
Name=Value arguments.

Examples

Add Tasks to Process Model

You can use the addTask function to create function-based tasks directly in the process model.

Open the Process Advisor example project.

processAdvisorExampleStart

The model AHRS_Voter opens with the Process Advisor pane to the left of the Simulink canvas.

In the Process Advisor pane, click the Edit process model button to open the processmodel.m
file for the project.

Replace the contents of the processmodel.m file with this code:

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 addTask(pm,"MyCustomTask",Action=@SayHello,...
 IterationQuery=padv.builtin.query.FindModels);

end

function results = SayHello(~)
 disp("Hello, World!");
 results = padv.TaskResult;
 results.ResultValues.Pass = 1;
end

 padv.ProcessModel.addTask

9-19

This code adds a task, MyCustomTask to the process model while specifying that the task runs the
function SayHello one time for each model found in the project. The function SayHello also
specifies the results returned by the task.

Input Arguments
pm — Process for project
padv.ProcessModel object (default)

Process for project, specified as a padv.ProcessModel object.
Example: pm = padv.ProcessModel

taskNameOrInstance — Name or instance of task
string | padv.Task object

Name or instance of a task, specified as a string or padv.Task object.
Example: "NameOfMyTask"
Example: padv.builtin.task.RunModelStandards

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
addTask(pm,"RunOnceForEachModel",IterationQuery=padv.builtin.query.FindModels
)

Title — Human readable name that appears in Process Advisor app
Name property of task (default) | string

Human readable name that appears in the Tasks column of the Process Advisor app, specified as a
string. By default, the Process Advisor app uses the Name property of the task as the Title.
Example: "My Task"
Data Types: string

IterationQuery — Artifacts that task iterates over
[1×1 padv.internal.QueryReference] (default) | padv.Query object | name of padv.Query
object

Artifacts that task iterates over, specified as a padv.Query object or the name of a padv.Query
object. By default, task objects run one time and are associated with the project. When you specify
IterationQuery, the task runs one time for each artifact specified by the padv.Query. In the
Process Advisor app, the artifacts specified by IterationQuery appear under task title.

For example, if the IterationQuery for a task finds three models, Model_A, Model_B, and
Model_C, the build system creates three task iterations under the title of the task in the Tasks
column.

9 Classes — Alphabetical List

9-20

Each of the artifacts under the task title represents a task iteration.

For an example of the effect of different IterationQuery values:

• If you have a task where the IterationQuery uses padv.builtin.query.FindModels to find
each of the models in the project, the build system creates a task iteration for each model.

• If you have a task where the IterationQuery uses padv.builtin.query.FindProjectFile
to find the project file, the build system creates a task iteration for the project file.

• If you have a task where the IterationQuery uses padv.builtin.query.FindTopModels to
find top models in the project, the build system creates a task iteration for each top model.

Example: IterationQuery = padv.builtin.query.FindModels
Data Types: string

InputQueries — Inputs to task
empty array of padv.Query objects (default) | padv.Query object | name of padv.Query object |
array of padv.Query objects

Inputs to the task, specified as:

• a padv.Query object
• the name of padv.Query object
• an array of padv.Query objects
• an array of names of padv.Query objects

 padv.ProcessModel.addTask

9-21

By default, the task does not specify any artifacts as inputs. When you specify InputQueries, the
task tasks the artifacts specified by the specified query or queries as an input.

Suppose a task runs once for each model in the project and you want to provide the models as inputs
to the task. If you specify InputQueries as the built-in query
padv.builtin.query.GetIterationArtifact, the query returns each artifact that the tasks
iterates over, which in this example is each of the models in the project.
Example: InputQueries = padv.builtin.query.GetIterationArtifact

InputDependencyQuery — Artifact dependencies for task inputs
[1×1 padv.internal.QueryReference] (default) | padv.Query object | name of padv.Query
object

Artifact dependencies for task inputs, specified as a padv.Query object or the name of a
padv.Query object.

Action — Function that task runs
[] (default) | function handle

Function that the task runs, specified as the function handle. When you run the task, the task runs
the function specified by the function handle.

For example, if you want the task to run the function myFunction, specify Action as @myFunction.
Example: Action = @myFunction
Data Types: function_handle

RequiredIterationArtifactType — Artifact type that task can run on
"" (default) | string

Artifact type that the task can run on, specified by a string. The required iteration artifact type must
be the artifact type supported by the IterationQuery property of the task.
Example: RequiredIterationArtifactType = "sl_model_file"
Data Types: string

Licenses — List of licenses that task requires
empty string (default) | string array

List of licenses that the task requires, specified as a string array.
Example: Licenses = ["matlab_report_gen" "simulink_report_gen"]
Data Types: string

AllLicenseRequired — Setting to require all licenses for task
true or 1 (default) | false or 0

Setting to require all licenses for task, specified as a numeric or logical 1 (true) or 0 (false). By
default, all licenses in the Licenses property of the task are required for the task to run. Specify 0
(false) if the task can run without all licenses listed in the Licenses property.
Example: Licenses = ["matlab_report_gen" "simulink_report_gen"]
Data Types: logical

9 Classes — Alphabetical List

9-22

DescriptionText — Task description
empty string (default) | string

Task description, specified as a string.
Example: "This task runs myScript."
Data Types: string

DescriptionCSH — Path to task documentation
empty string (default) | string

Path to task documentation, specified as a string.
Example: DescriptionCSH =
fullfile(pwd,"taskHelpFiles","myTaskDocumentation.pdf")

Data Types: string

Output Arguments
taskObj — Task object
padv.Task object

Task object, returned as a padv.Task object.

For more information, see the documentation for "padv.Task" in the chapter "Classes — Alphabetical
List".

Version History
Introduced in R2022a

 padv.ProcessModel.addTask

9-23

padv.Query
Select set of artifacts from project

Description
A padv.Query object represents a query that you can use to select a set of artifacts from a project.
Use the input arguments to define the set of artifacts that the query selects. Queries can either be
function-based or class-based. Use FunctionHandle to specify a function for a function-based query
or use inheritance for a class-based query.

Creation

Syntax
Q = padv.Query(Name)
Q = padv.Query(Name,Name,Value)

Description

Q = padv.Query(Name) creates a query object with the name Name.

Q = padv.Query(Name,Name,Value) specifies query properties using one or more name-value
arguments. For example, DefaultArtifactType = "sl_model_file" changes the default
artifact type for the query from a generic output file, "padv_output_file", to a model file,
"sl_model_file".

Input Arguments

Name — Unique identifier for query
character vector | string

Unique identifier for query, specified as character vector or string. You can only specify a query name
when you create a query object. You cannot change the query name after you create the query object.

Each query in the process model must have a unique name.
Example: "CustomQueryForArtifacts"
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: DefaultArtifactType = "sl_model_file"

Title — Human-readable name for query
Name (default) | character vector | string

9 Classes — Alphabetical List

9-24

Human-readable name for query, specified as character vector or string.
Example: Title = "Custom Query for Artifacts"
Data Types: char | string

DefaultArtifactType — Expected artifact type
"padv_output_file" (default) | valid value for the Type property of a padv.Artifact object

Expected artifact type, specified as a valid value for the Type property of a padv.Artifact object.
padv.Task objects use the DefaultArtifactType to confirm that the artifacts output by the query
are the types of artifacts required by the padv.Task object.

When you use the run function on a query object, the DefaultArtifactType is the default value
for artifacts returned by the function.
Example: DefaultArtifactType = "sl_model_file"

Parent — Initial query run before iteration query
[0×0 string] (default) | padv.Query object | Name of padv.Query object

Initial query run before iteration query, specified as either a padv.Query object or the Name of a
padv.Query object. When you specify a padv.Query object as the iteration query for a task, the
Parent query is the initial query that the build system runs before running the specified iteration
query.

For example, the built-in querypadv.builtin.query.FindModelsWithTestCases has the
Parent query padv.builtin.query.FindModels. If you specify
padv.builtin.query.FindModelsWithTestCases as the iteration query for a task, you are
specifying that you want the task to run once for each model with a test case. The build system runs
the Parent query padv.builtin.query.FindModels first, to find the models in the project, and
then the build system runs the iteration query padv.builtin.query.FindModelsWithTestCases
to find the models with test cases.

The build system ignores the Parent query when you specify a query as an input query or
dependency query for a task.
Example: "padv.builtin.query.FindModels"

SortArtifacts — Setting for automatically sorting artifacts by address
true or 1 (default) | false or 0

Setting for automatically sorting artifacts by address, specified as a numeric or logical 1 (true) or 0
(false). When a query returns artifacts, the artifacts should be in a consistent order. By default, the
build system sorts artifacts by the artifact address.

Alternatively, you can sort artifacts in a different order by overriding the internal sortArtifacts
method in a subclass that defines a custom sort behavior. The build system automatically calls the
sortArtifacts method when using the process model. The sortArtifacts method expects two
input arguments: a padv.Query object and a list of padv.Artifact objects returned by the run
function. The sortArtifacts method should return a list of sorted padv.Artifact objects.
Example: SortArtifacts = false
Data Types: logical

FunctionHandle — Handle to function that runs when you run query object
[] (default) | function_handle

 padv.Query

9-25

Handle to function that runs when you run query object, specified as a function_handle.

When you call the run function on a query object, run runs the function specified by the
function_handle.
Example: FunctionHandle = @FunctionForQuery
Data Types: function_handle

Version History
Introduced in R2022a

9 Classes — Alphabetical List

9-26

padv.Task
Single step in process

Description
A padv.Task object represents a single step in a padv.ProcessModel process. For example, a
padv.Task object could represent a step like checking modeling standards, running tests,
generating code, or performing a custom action. padv.Task objects can accept project artifacts as
inputs, perform actions, generate assessments, and return project artifacts as outputs. In your
process model, use the object functions addInputQueries, dependsOn, and runsAfter to specify
the inputs, dependencies, and desired execution order for a task. You can execute tasks as part of a
pipeline. Use the runprocess function to generate and run a pipeline of tasks.

Creation

Syntax
taskObject = padv.Task(Name)
taskObject = padv.Task(___ ,Name=Value)

Description

taskObject = padv.Task(Name) represents a task, named Name, in a padv.ProcessModel
process. Each task object in a process must have a unique Name.

taskObject = padv.Task(___ ,Name=Value) sets properties using one or more name-value
arguments. For example,
padv.Task("myTask",IterationQuery=padv.builtin.query.FindModels) creates a task
object named myTask that runs once for each model.

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Properties
Name — Unique identifier for task in process
string

Unique identifier for task in process, returned as a string. When you specify the Name, you specify the
Name property of the task object.

Each task in the process model must have a unique Name. After you specify a Name for a padv.Task
object, you cannot change the Name.
Example: "myTask"
Data Types: string

 padv.Task

9-27

Title — Human readable name that appears in Process Advisor app
Name property of task (default) | string

Human readable name that appears in the Tasks column of the Process Advisor app, returned as a
string. By default, the Process Advisor app uses the Name property of the task as the Title.
Example: "My Task"
Data Types: string

IterationQuery — Artifacts that task iterates over
[1×1 padv.internal.QueryReference] (default) | padv.Query object | name of padv.Query
object

Artifacts that task iterates over, returned as a padv.Query object or the name of a padv.Query
object. By default, task objects run one time and are associated with the project. When you specify
IterationQuery, the task runs one time for each artifact returned by the padv.Query. In the
Process Advisor app, the artifacts returned by IterationQuery appear under task title.

For example, if the IterationQuery for a task finds three models, Model_A, Model_B, and
Model_C, the build system creates three task iterations under the title of the task in the Tasks
column.

Each of the artifacts under the task title represents a task iteration.

For an example of the effect of different IterationQuery values:

• If you have a task where the IterationQuery uses padv.builtin.query.FindModels to find
each of the models in the project, the build system creates a task iteration for each model.

• If you have a task where the IterationQuery uses padv.builtin.query.FindProjectFile
to find the project file, the build system creates a task iteration for the project file.

• If you have a task where the IterationQuery uses padv.builtin.query.FindTopModels to
find top models in the project, the build system creates a task iteration for each top model.

9 Classes — Alphabetical List

9-28

Example: IterationQuery = padv.builtin.query.FindModels
Data Types: string

InputQueries — Inputs to task
empty array of padv.Query objects (default) | padv.Query object | name of padv.Query object |
array of padv.Query objects

Inputs to the task, returned as:

• a padv.Query object
• the name of padv.Query object
• an array of padv.Query objects
• an array of names of padv.Query objects

By default, the task does not specify any artifacts as inputs. When you specify InputQueries, the
task tasks the artifacts returned by the specified query or queries as an input.

Suppose a task runs once for each model in the project and you want to provide the models as inputs
to the task. If you specify InputQueries as the built-in query
padv.builtin.query.GetIterationArtifact, the query returns each artifact that the tasks
iterates over, which in this example is each of the models in the project.
Example: InputQueries = padv.builtin.query.GetIterationArtifact

Action — Function that task runs
[] (default) | function handle

Function that the task runs, returned as the function handle. When you run the task, the task runs the
function specified by the function handle.

For example, if you want the task to run the function myFunction, specify Action as @myFunction.
Example: Action = @myFunction
Data Types: function_handle

RequiredIterationArtifactType — Artifact type that task can run on
"" (default) | string

Artifact type that the task can run on, returned by a string. The required iteration artifact type must
be the artifact type supported by the IterationQuery property of the task.
Example: RequiredIterationArtifactType = "sl_model_file"

 padv.Task

9-29

Data Types: string

DescriptionText — Task description
empty string (default) | string

Task description, returned as a string.
Example: "This task runs myScript."
Data Types: string

DescriptionCSH — Path to task documentation
empty string (default) | string

Path to task documentation, returned as a string.
Example: DescriptionCSH =
fullfile(pwd,"taskHelpFiles","myTaskDocumentation.pdf")

Data Types: string

Licenses — List of licenses that task requires
empty string (default) | string array

List of licenses that the task requires, returned as a string array.
Example: Licenses = ["matlab_report_gen" "simulink_report_gen"]
Data Types: string

Products — List of products that must be installed to run task
empty string (default) | string array

List of products that must be installed to run the task, returned as a string array.
Data Types: string

AllLicenseRequired — Setting to require all licenses for task
true or 1 (default) | false or 0

Setting to require all licenses for task, returned as a numeric or logical 1 (true) or 0 (false). By
default, all licenses in the Licenses property of the task are required for the task to run. Specify 0
(false) if the task can run without all licenses listed in the Licenses property.
Example: Licenses = ["matlab_report_gen" "simulink_report_gen"]
Data Types: logical

InputDependencyQuery — Artifact dependencies for task inputs
[1×1 padv.internal.QueryReference] (default) | padv.Query object | name of padv.Query
object

Artifact dependencies for task inputs, returned as a padv.Query object or the name of a
padv.Query object.

LaunchToolAction — Function that launches a tool
[] (default) | function handle

Function that launches a tool, returned as the function handle.

9 Classes — Alphabetical List

9-30

When the property LaunchToolAction is specified, you can point to the task in the Process
Advisor app and click ... > Open Tool Name to open the tool associated with the task.

For tasks that are not built-in tasks, the task options show ... > Launch Tool.
Example: LaunchToolAction = @myFunction
Data Types: function_handle

Object Functions
• addInputQueries
• dependsOn
• run
• runsAfter

Examples

Create Task Objects and Add Tasks to Process Model

You can use padv.Task to create task objects and then use the addTask function to add the task
objects to the padv.ProcessModel object.

Open the Process Advisor example project.

processAdvisorExampleStart

The model AHRS_Voter opens with the Process Advisor pane to the left of the Simulink canvas.

In the Process Advisor pane, click the Edit process model button to open the processmodel.m
file for the project.

Replace the contents of the processmodel.m file with this code:

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 taskA = padv.Task("taskA");
 taskB = padv.Task("taskB");

 runsAfter(taskB,taskA);

 addTask(pm,taskA);
 addTask(pm,taskB);

end

This code uses padv.Task to create two task objects: taskA and taskB.

The object function runsAfter specifies that taskB should run after taskA.

 padv.Task

9-31

The function addTask adds the task objects to the padv.ProcessModel object.

Version History
Introduced in R2022a

9 Classes — Alphabetical List

9-32

padv.Task.addInputQueries
Package: padv

Add input artifacts as inputs to task

Syntax
addInputQueries(taskObj,inputQueries)

Description
addInputQueries(taskObj,inputQueries) adds the input artifacts returned by inputQueries
as inputs to the task represented by taskObj.

If the task already has input queries specified, addInputQueries adds inputQueries to the list of
input queries in the InputQueries property.

Examples

Add Inputs to Task

Use addInputQueries to specify the models in the project as inputs to a task.

Create a new padv.Task object myTaskObj that represents a task named runForEachModel.

myTaskObj = padv.Task("runForEachModel");

By default, the task does not have any inputs.

Use the function addInputQueries to add the built-in query padv.builtin.query.FindModels
as the input query for the task.

addInputQueries(myTaskObj,padv.builtin.query.FindModels);

When you run the task defined by myTaskObj, the query padv.builtin.query.FindModels finds
each model in the project and provides the models as the input artifacts for the task.

Input Arguments
taskObj — Task object that represents task
padv.Task object

Task object that represents a task, specified as a padv.Task object.
Example: myTaskObj = padv.Task("myTask");

inputQueries — Queries that get input artifacts for task
padv.Query object | array of padv.Query object

 padv.Task.addInputQueries

9-33

A query or queries that get the input artifacts for a task, specified as a padv.Query object or an
array of padv.Query objects. Each artifact that the query or queries return becomes an input to the
task.

For example, if you specify the InputQuery property for a task as the query
padv.builtin.query.FindModels, the query returns each model and the models become input
artifacts for the task.

Note You can only specify the following queries for the inputQueries argument:

• padv.builtin.query.FindArtifacts
• padv.builtin.query.FindFileWithAddress
• padv.builtin.query.FindModels
• padv.builtin.query.FindProjectFile
• padv.builtin.query.FindRequirements
• padv.builtin.query.FindRequirementsForModel
• padv.builtin.query.FindTestCasesForModel
• padv.builtin.query.FindTopModels
• padv.builtin.query.GetDependentArtifacts
• padv.builtin.query.GetIterationArtifact
• padv.builtin.query.GetOutputsOfDependentTask

You cannot specify the following queries for inputQueries:

• padv.builtin.query.FindFilesWithLabel
• padv.builtin.query.FindModelsWithLabel
• padv.builtin.query.FindModelsWithTestCases
• padv.builtin.query.FindRefModels

Example: addInputQueries(myTaskObj,padv.builtin.query.FindModels)
Example: addInputQueries(myTaskObj,
[padv.builtin.query.GetIterationArtifact,padv.builtin.query.GetDependentArtif
acts])

9 Classes — Alphabetical List

9-34

Version History
Introduced in R2022a

 padv.Task.addInputQueries

9-35

padv.Task.dependsOn
Package: padv

Create dependency between tasks

Syntax
dependsOn(taskObj,dependencies)
dependsOn(___ ,Name=Value)

Description
dependsOn(taskObj,dependencies) creates a dependency between taskObj and
dependencies. taskObj runs only after the tasks specified by dependencies run and return a task
status.

dependsOn(___ ,Name=Value) specifies how the build system handles dependencies using one or
more Name=Value arguments.

Examples

Create Dependency Between Two Tasks

Use the dependsOn function to create a dependency between two tasks in a process model.

Open the Process Advisor example project.

processAdvisorExampleStart

Open the processmodel.m file. The file is at the root of the project.

Replace the contents of the processmodel.m file with the following code:

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 TaskA = padv.Task("TaskA");
 TaskB = padv.Task("TaskB");

 dependsOn(TaskB,TaskA);

 addTask(pm,TaskA);
 addTask(pm,TaskB);

end

This code uses padv.Task to create two task objects: TaskA and TaskB.

The object function dependsOn specifies that TaskB depends on TaskA.

9 Classes — Alphabetical List

9-36

The function addTask adds the task objects to the padv.ProcessModel object.

Open the Process Advisor app. In the MATLAB Command Window, enter:

processAdvisorWindow

In the Tasks column, point to the run button for TaskB. The Process Advisor app automatically
highlights both tasks since TaskA is a dependent task. If you click the run button for TaskB, TaskA
will run before TaskB.

Input Arguments
taskObj — Task object that represents task
padv.Task object

Task object that represents a task, specified as a padv.Task object.
Example: myTaskObj = padv.Task("myTask");

dependencies — Tasks that need to run before taskObj runs
string | character vector | padv.Task object

Tasks that need to run before taskObj runs, specified as either:

• The name of a task, specified as a string or character vector.
• A padv.Task object.

Example: dependsOn(TaskB,"TaskA")
Example: dependsOn(TaskB,TaskA)
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: dependsOn(TaskB,TaskA,WhenStatus=["Pass","Fail"])

IterationArtifactMatching — Setting that controls which dependent task iterations run
true or 1 (default) | false or 0

 padv.Task.dependsOn

9-37

Setting that controls which dependent task iterations run, specified as a numeric or logical 1 (true)
or 0 (false):

• true — When the build system runs the dependencies of a task, the build system runs only the
task iterations that the tasks have in common.

• false — When the build system runs the dependencies of a task, the build system runs all task
iterations. This behavior is useful when you have a task that creates new project artifacts and a
task that runs on each artifact in the project. The second task depends on all project artifacts
generated by the first task.

For example, suppose you have two tasks: TaskA and TaskB:

• TaskA runs on ModelA and ModelB.
• TaskB runs only on ModelB and depends on TaskA.

If you run TaskB and:

• IterationArtifactMatching is true, TaskA runs only on ModelB.

• IterationArtifactMatching is false, TaskA runs on both ModelA and ModelB.

Example: dependsOn(TaskB,TaskA,IterationArtifactMatching=false)
Data Types: logical

WhenStatus — Setting that controls when dependencies run
"Pass" (default) | ["Pass","Fail"] | ["Pass","Fail","Error"]

Setting that controls when dependencies run, specified as either:

9 Classes — Alphabetical List

9-38

• "Pass" — Only run the task if the dependencies pass. For example, if TaskB depends on TaskA,
TaskA needs to pass before TaskB runs. If TaskA fails or errors, TaskB does not run.

• ["Pass","Fail"] — Only run the task if the dependencies either pass or fail. For example, if
TaskB depends on TaskA, TaskA needs to either pass or fail before TaskB runs. If TaskA errors,
TaskB does not run.

• ["Pass","Fail","Error"] — The task runs, even if the dependencies fail or error. For
example, if TaskB depends on TaskA, TaskA can pass, fail, or error and TaskB still runs.

Example: dependsOn(TaskB,TaskA,WhenStatus=["Pass","Fail"])
Data Types: string

Version History
Introduced in R2022a

 padv.Task.dependsOn

9-39

padv.Task.run
Package: padv

Run task

Syntax
taskResult = run(taskObj)
taskResult = run(taskObj,inputArtifacts)

Description
taskResult = run(taskObj) runs the task represented by taskObj and returns the result from
the task.

How a task runs depends on how the you define the task. You can define tasks using a function or a
class:

• Function-based tasks — Runs the function specified by the Action property of the task.
• Class-based task — Runs the run function implemented inside the class definition.

By default, when you create a padv.Task object, the task is a function-based task, even if you do not
specify an Action property for the task.

taskResult = run(taskObj,inputArtifacts) uses the artifacts specified by inputArtifacts
as inputs to the task. The InputQuery property of the task specifies the query that provides the
inputArtifacts for the task.

Examples

Run Task

Create a new padv.Task object and run the task.

Create a new padv.Task object myTaskObj that represents a task named myTask.

myTaskObj = padv.Task("myTask");

Use the run object function to run the task. Save the results to the variable taskResults.

taskResults = run(myTaskObj)

taskResults =

 TaskResult with properties:

 Status: Pass
 OutputArtifacts: [0×0 padv.Artifact]
 Details: [1×1 struct]
 ResultValues: [1×1 struct]

9 Classes — Alphabetical List

9-40

In this example, there is no Action associated with the task and the task returns a
padv.TaskResult with a Status of Pass.

Input Arguments
taskObj — Task object that represents task
padv.Task object

Task object that represents a task, specified as a padv.Task object.
Example: myTaskObj = padv.Task("myTask");

inputArtifacts — Artifacts that are inputs to task
cell array of padv.Artifact objects

Artifacts that are inputs to the task, specified as a cell array of padv.Artifact objects.

If you specified the InputQuery property for a task, the InputQuery automatically passes a cell
array of padv.Artifact objects to inputArtifacts when you run the task.

Output Arguments
taskResult — Result from task
TaskResult object

Result from the task, returned as a TaskResult object.

Version History
Introduced in R2022a

 padv.Task.run

9-41

padv.Task.runsAfter
Package: padv

Specify preferred execution order for tasks

Syntax
runsAfter(taskObj,predecessors)
runsAfter(___ ,Name=Value)

Description
runsAfter(taskObj,predecessors) specifies a preferred execution order for tasks. If possible,
the build system runs the predecessor tasks, specified by predecessors, before the task
represented by taskObj.

runsAfter(___ ,Name=Value) specifies how the build system handles the preferred execution
order using one or more Name=Value arguments.

Examples

Specify Preferred Execution Order for Two Tasks

Use the runsAfter function to specify that one task should run after another task.

Open the Process Advisor example project.

processAdvisorExampleStart

Open the processmodel.m file. The file is at the root of the project.

Replace the contents of the processmodel.m file with the following code:

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 FirstTask = padv.Task("FirstTask");
 SecondTask = padv.Task("SecondTask");

 runsAfter(SecondTask,FirstTask);

 addTask(pm,FirstTask);
 addTask(pm,SecondTask);

end

This code uses padv.Task to create two task objects: FirstTask and SecondTask.

The object function runsAfter specifies that SecondTask should run after FirstTask.

9 Classes — Alphabetical List

9-42

The function addTask adds the task objects to the padv.ProcessModel object.

Open the Process Advisor app. In the MATLAB Command Window, enter:

processAdvisorWindow

In the toolstrip, click the Run All button. You can see that SecondTask runs after FirstTask.

Input Arguments
taskObj — Task object that represents task
padv.Task object

Task object that represents a task, specified as a padv.Task object.
Example: myTaskObj = padv.Task("myTask");

predecessors — Tasks that should run before taskObj runs
string | character vector | padv.Task object

Tasks that should run before taskObj runs, specified as either:

• The name of a task, specified as a string or character vector.
• A padv.Task object.

Example: runsAfter(SecondTask,"FirstTask")
Example: runsAfter(SecondTask,FirstTask)

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: runsAfter(SecondTask,FirstTask,StrictOrdering=true)

IterationArtifactMatching — Setting that controls which predecessor task iterations run
true or 1 (default) | false or 0

Setting that controls which predecessor task iterations run, specified as a numeric or logical 1 (true)
or 0 (false):

• true — When the build system runs the predecessors of a task, the build system runs only the
task iterations that the tasks have in common.

• false — When the build system runs the predecessor of a task, the build system runs all task
iterations. This behavior is useful when you have a task that creates new project artifacts and a
task that runs on each artifact in the project. The second task should run after all project artifacts
generated by the first task.

For example, suppose you have two tasks: FirstTask and SecondTask:

• FirstTask runs on ModelA and ModelB.
• SecondTask runs only on ModelB and should run after on FirstTask.

If you run SecondTask and:

 padv.Task.runsAfter

9-43

• IterationArtifactMatching is true, FirstTask runs only on ModelB.
• IterationArtifactMatching is false, FirstTask runs on both ModelA and ModelB.

Example: runsAfter(SecondTask,FirstTask,IterationArtifactMatching=false)
Data Types: logical

StrictOrdering — Setting that controls whether build system ignores circular
relationships between tasks
false or 0 (default) | true or 1

Setting that controls whether the build system ignores circular relationships between tasks, specified
as a numeric or logical 0 (false) or 1 (true). By default, if you specify a circular relationship
between tasks, the build system ignores the relationship. For example, if you specify both
runsAfter(SecondTask,FirstTask) and runsAfter(FirstTask,SecondTask), the build
system ignores the runsAfter relationship.

If you specify StrictOrdering as true, the build system generates an error when you try to run
tasks that have a circular relationship.
Example: runsAfter(SecondTask,FirstTask,StrictOrdering=true)
Data Types: string

Version History
Introduced in R2022a

9 Classes — Alphabetical List

9-44

padv.TaskResult
Create and access results from task

Description
A padv.TaskResult object represents the results from a task. The run function of a padv.Task
creates a padv.TaskResult object that you can use to access the results from the task. When you
create a custom task, you can specify the results from your custom task. You can also use the function
getProcessTaskResults to view a list of the last task results for a project. The Process Advisor
app uses task results to determine the task statuses, output artifacts, and detailed task results that
appear in the Tasks, Out, and Details columns of the app.

Creation

Syntax
resultObj = padv.TaskResult()

Description

resultObj = padv.TaskResult() creates a result object resultObj that represents the results
from a task.

Properties
Status — Task result status
Pass (default) | Fail | Error

Task result status, returned as:

• Pass — A passing task status. The task completed successfully without any issues.
• Fail — A failing task status. The task completed, but the results were not successful.
• Error — An error task status. The task generated an error and did not complete.

The Status property determines the task status shown in the Tasks column in the Process Advisor
app.

For custom tasks, you can specify the task result status as either:

• padv.TaskStatus.Pass — Sets the Status property to Pass.
• padv.TaskStatus.Fail — Sets the Status property to Fail.
• padv.TaskStatus.Error — Sets the Status property to Error.

For example, taskResult.Status = padv.TaskStatus.Fail sets the Status property of the
task result object to Fail to represent a failing task status.
Example: Fail

 padv.TaskResult

9-45

OutputArtifacts — Artifacts created by task
empty array padv.Artifact.empty() (default) | padv.Artifact object | array of
padv.Artifact objects

Artifacts created by the task, returned as a padv.Artifact object or array of padv.Artifact
objects.

The OutputArtifacts property determines the output artifacts shown in the Out column in the
Process Advisor app.

The build system only manages output artifacts specified by the task result. For custom tasks, use the
OutputPaths argument to define the output artifacts for the task result.

Details — Temporary storage for task-specific data
struct with no fields (default) | struct

Temporary storage for task-specific data, returned as a struct. The build system uses Details to
store task-specific data that other build steps can use.

Note that Details are temporary. The build system does not save Details with the task results
after the build finishes.
Data Types: struct

ResultValues — Number of passing, warning, and failing conditions
struct with Pass: 0, Warn: 0, Fail: 0 (default) | struct with fields Pass, Warn, Fail

Number of passing, warning, and failing conditions, returned as a struct with fields:

• Pass — Number of passing conditions returned by task
• Warn — Number of warning conditions returned by task
• Fail — Number of failing conditions returned by task

The ResultValues property determines the detailed results shown in the Details column in the
Process Advisor app.

For example, the task padv.builtin.task.RunModelStandards runs several Model Advisor
checks and returns the number of passing, warning, and failing checks. If you run the task and one
check passes, two checks generate a warning, and three checks fail, ResultValue returns:

ans =

 struct with fields:

 Pass: 1
 Warn: 2
 Fail: 3

Data Types: struct

OutputPaths — Define OutputArtifacts for task result
character vector | string

This property is write-only.

OutputArtifacts for task result, specified as a list of paths.

9 Classes — Alphabetical List

9-46

The build system adds each path specified by OutputArtifacts to the OutputArtifacts
argument as a padv.Artifact object with type padv_output_file.
Example: taskResultObj.OutputPaths = string(fullfile(pwd,filename))
Data Types: char | string

Object Functions
• applyStatus

Examples

Create Task Result for Custom Task

Create a padv.TaskResult object for a custom task that has a failing task status, outputs a
single .json file, and 1 passing condition, 2 warning conditions, and 3 failing conditions.

Open the Process Advisor example project.

processAdvisorExampleStart

The model AHRS_Voter opens with the Process Advisor pane to the left of the Simulink canvas.

In the Process Advisor pane, click the Edit process model button to open the processmodel.m
file for the project.

Replace the contents of the processmodel.m file with this example process model code:

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 addTask(pm,"ExampleTask",Action=@ExampleAction);

end

function taskResult = ExampleAction(~)

 % Create a task result object that stores the results
 taskResult = padv.TaskResult();

 % Specify the task status shown in the Tasks column
 taskResult.Status = padv.TaskStatus.Fail;

 % Specify the output files shown in the Out column
 outputFile = "tools\sampleChecks.json";
 taskResult.OutputPaths = string(fullfile(pwd,outputFile));

 % Specify the values shown in the Details column
 taskResult.ResultValues.Pass = 1;
 taskResult.ResultValues.Warn = 2;

 padv.TaskResult

9-47

 taskResult.ResultValues.Fail = 3;

end

Save the processmodel.m file.

Go back to the Process Advisor app and click Refresh Tasks to update the list of tasks shown in the
app.

In the top left corner of the Process Advisor pane, switch the filter from Model to Project.

In the top right corner of the Process Advisor pane, click Run All.

• The Tasks column shows a failing task status to the left of ExampleTask. This code from the
example process model specifies the task status shown in the Tasks column:

taskResult.Status = padv.TaskStatus.Fail;
• The Out column shows an output artifact associated with the task. This code from the example

process model specifies the output artifact shown in the Out column:

taskResult.OutputPaths = string(fullfile(pwd,outputFile));
• The Details column shows 1 passing condition, 2 warning conditions, and 3 failing conditions.

This code from the example process model specifies the detailed task results shown in the Details
column:

taskResult.ResultValues.Pass = 1;
taskResult.ResultValues.Warn = 2;
taskResult.ResultValues.Fail = 3;

Version History
Introduced in R2022a

9 Classes — Alphabetical List

9-48

padv.TaskResult.applyStatus
Package: padv

Apply new task status if priority is higher

Syntax
applyStatus(resultObj,taskStatus)

Description
applyStatus(resultObj,taskStatus) applies a new task status taskStatus to the task result
object resultObj if the priority level of taskStatus is higher than the current Status property of
the task result object.

The priority levels from lowest to highest are:

• padv.TaskStatus.Pass
• padv.TaskStatus.Fail
• padv.TaskStatus.Error

Note The function applyStatus can only change the Status to a higher priority status. For
example, if you apply a failing status and then apply a passing status, the status remains a failing
status because the priority of padv.TaskStatus.Fail is higher than the priority of
padv.TaskStatus.Pass.

taskResult = padv.TaskResult(); % By default, Status is Pass.
applyStatus(taskResult, padv.TaskStatus.Fail); % Status changes to Fail.
applyStatus(taskResult, padv.TaskStatus.Pass); % Status remains Fail.
taskResult

taskResult =

 TaskResult with properties:

 Status: Fail
 OutputArtifacts: [0×0 padv.Artifact]
 Details: [1×1 struct]
 ResultValues: [1×1 struct]

To set the Status property of a task result object to a specific value, manually set the property to
either padv.TaskStatus.Pass, padv.TaskStatus.Fail, or padv.TaskStatus.Error. For
example, to set the Status of a task result object taskResult to Pass, use taskResult.Status
= padv.TaskStatus.Pass.

Examples

 padv.TaskResult.applyStatus

9-49

Apply Status to Task Result

Use applyStatus to update the Status property of a task result object. If the status is a higher
priority status, applyStatus updates the Status property of the task result object.

Create a task result object. By default, the Status property of the task result object is specified as
Pass.

taskResult = padv.TaskResult();

Suppose the task needs to generate an error. Use applyStatus to apply an error task status,
specified by padv.TaskStatus.Error.

applyStatus(taskResult,padv.TaskStatus.Error);

padv.TaskStatus.Error has a higher priority than a passing task status, so applyStatus
updates the Status property of the task result object.

Apply a passing task status to the task result object. A passing task status is specified by
padv.TaskStatus.Pass.

applyStatus(taskResult,padv.TaskStatus.Pass);

padv.TaskStatus.Pass does not have a higher priority than an error task status, so applyStatus
does not change the Status of the task result object.

Inspect the properties of the task result object.

taskResult

Suppose you want to reset the status of the task result object to a passing task status. Manually
specify the Status property as padv.TaskStatus.Pass.

taskResult.Status = padv.TaskStatus.Pass

taskResult =

 TaskResult with properties:

 Status: Pass
 OutputArtifacts: [0×0 padv.Artifact]
 Details: [1×1 struct]
 ResultValues: [1×1 struct]

The task result object now has a passing task status.

Input Arguments
resultObj — Task result object
padv.TaskResult object

Task result object, specified as a padv.TaskResult object.

taskStatus — Task status
padv.TaskStatus.Pass | padv.TaskStatus.Fail | padv.TaskStatus.Error

9 Classes — Alphabetical List

9-50

Task status, specified as padv.TaskStatus.Pass, padv.TaskStatus.Fail, or
padv.TaskStatus.Error.
Example: padv.TaskStatus.Fail

Version History
Introduced in R2022a

 padv.TaskResult.applyStatus

9-51

Built-In Tasks — Alphabetical List

The support package CI/CD Automation for Simulink Check contains several built-in tasks that you
can use when you define your process. The built-in tasks have a default behavior, but you can
reconfigure the built-in tasks to perform different actions. You can see a list of built-in tasks when you
type padv.builtin.task. and use tab completion. You can also view the source code for the built-
in tasks. The source code is located in the directory returned by this code:

fullfile(matlabshared.supportpkg.getSupportPackageRoot,...
"\toolbox\padv\build_service\ml\+padv\+builtin\+task")

The built-in tasks include:

Task Title Task Name and Source Code File
Check Coding Standards (Ref) • Name: "padv.builtin.task.AnalyzeRefModelCode"

• File: AnalyzeRefModelCode.m
Check Coding Standards (Top) • Name: "padv.builtin.task.AnalyzeTopModelCode"

• File: AnalyzeTopModelCode.m
Check Modeling Standards • Name: "padv.builtin.task.RunModelStandards"

• File: RunModelStandards.m
Detect Design Errors • Name: "padv.builtin.task.DetectDesignErrors"

• File: DetectDesignErrors.m
Generate Code (Ref) • Name: "padv.builtin.task.GenerateCodeAsRefModel"

• File: GenerateCodeAsRefModel.m
Generate Code (Top) • Name: "padv.builtin.task.GenerateCodeAsTopModel"

• File: GenerateCodeAsTopModel.m
Generate SDD Report • Name: "padv.builtin.task.GenerateSDDReport"

• File: GenerateSDDReport.m
Generate Simulink Web View • Name: "padv.builtin.task.GenerateSimulinkWebView"

• File: GenerateSimulinkWebView.m
Inspect Code (Ref) • Name: "padv.builtin.task.RunCodeInspectionAsRefModel"

• File: RunCodeInspection.m
Inspect Code (Top) • Name: "padv.builtin.task.RunCodeInspectionAsTopModel"

• File: RunCodeInspection.m
Merge Test Results • Name: "padv.builtin.task.MergeTestResults"

• File: MergeTestResults.m
Run Tests • Name: "padv.builtin.task.RunTestsPerModel"

• File: RunTestsPerModel.m
Run Tests • Name: "padv.builtin.task.RunTestsPerTestCase"

• File: RunTestsPerTestCase.m

10

Note that if a task title includes (Ref), the task runs on reference models in the project. If a task title
include (Top), the task runs on top models in the project.

Reference pages for the built-in task are listed alphabetically on the following pages.

10 Built-In Tasks — Alphabetical List

10-2

Check Coding Standards (Ref)
This task uses Polyspace Bug Finder to analyze generated reference model code for run-time defects,
coding standards, and code metrics. This task runs on the generated reference model code for each
model in the project.

If a model does not have generated code, the task skips the analysis for the model and displays a
warning message.

Task Instance Task Title in Process Advisor
padv.builtin.task.AnalyzeRefModelCode Check Coding Standards (Ref)

Use the addTask function to add the task to the process model. To check if Polyspace Bug Finder is
installed and setup before you add the Check Coding Standards (Ref) task, use this code:

 if exist('polyspaceroot','file') % if Polyspace installed and set up
 psTaskObj = addTask(pm, padv.builtin.task.AnalyzeRefModelCode);
 end

To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.AnalyzeRefModelCode

 Check Coding Standards (Ref)

10-3

Check Coding Standards (Top)
This task uses Polyspace Bug Finder to analyze generated code for run-time defects, coding
standards, and code metrics. This task runs on the generated top model code in the project.

If a model does not have generated code, the task skips the analysis for the model and displays a
warning message.

Task Instance Task Title in Process Advisor
padv.builtin.task.AnalyzeTopModelCode Check Coding Standards (Top)

Use the addTask function to add the task to the process model. To check if Polyspace Bug Finder is
installed and setup before you add the Check Coding Standards (Top) task, use this code:

 if exist('polyspaceroot','file') % if Polyspace installed and set up
 psTaskObj = addTask(pm, padv.builtin.task.AnalyzeTopModelCode);
 end

To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.AnalyzeTopModelCode

10 Built-In Tasks — Alphabetical List

10-4

Check Modeling Standards
This task uses the Model Advisor to check your models for modeling conditions and configuration
settings that cause inaccurate or inefficient simulation of the system that the model represents.
Running model standards checking can also help you verify compliance with industry standards and
guidelines.

You can configure this task to specify which model standards the task runs. For example, you can
specify a Model Advisor configuration file or list of check identifiers to include in the Model Advisor
analysis. If you do not specify which model standards to run, the task runs a subset of high-integrity
systems checks by default.

Task Instance Task Title in Process Advisor
padv.builtin.task.RunModelStandards Check Modeling Standards

Use the addTask function to add the task to the process model:

 maTaskObj = addTask(pm,padv.builtin.task.RunModelStandards);

You can reconfigure the task object to specify a different Model Advisor configuration file:

 % Create a query that looks for your Model Advisor Configuration file
 findMyConfigFile = padv.builtin.query.FindFileWithAddress(...
 'ma_config_file', fullfile('tools','sampleChecks.json'));

 % Add the configuration file as an input to the task
 addInputQueries(maTaskObj,findMyConfigFile);

If you wanted to specify a list of check IDs instead of a configuration, you could modify the
RunOptions of maTaskObj:

 maTaskObj.RunOptions.CheckIDList = {'mathworks.jmaab.db_0032',...
 'mathworks.jmaab.jc_0281'};

If you specify both a Model Advisor configuration file and a list of check IDs for a task, the task uses
the Model Advisor configuration file.

To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.RunModelStandards

 Check Modeling Standards

10-5

Detect Design Errors
This task uses Simulink Design Verifier to statically detect run-time errors and dead logic and to
derive design ranges on your model. Design error detection can identify dead logic, integer overflow,
division by zero, and violations of design properties and assertions.

Task Instance Task Title in Process Advisor
padv.builtin.task.DetectDesignErrors Detect Design Errors

Use the addTask function to add the task to the process model:

 dedObj = addTask(pm,padv.builtin.task.DetectDesignErrors);

You can reconfigure the run options of the task object to change the analysis options:

 dedObj.RunOptions.DetectDeadLogic = 'on';

To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.DetectDesignErrors

By default, this task outputs a design error detection report and data file.

10 Built-In Tasks — Alphabetical List

10-6

Generate Code (Ref)
This task uses Embedded Coder to generate code that other models can reference. By default, this
task runs on the referenced models in the project. Referenced models are models that other models
in the project reference. The task returns the generated code report as an output file.

Note This task generates code but does not build executable files.

Task Instance Task Title in Process Advisor
padv.builtin.task.GenerateCodeAsRefModel Generate Code (Ref)

Use the addTask function to add the task to the process model:

 addTask(pm,padv.builtin.task.GenerateCodeAsRefModel);

To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.GenerateCodeAsRefModel

 Generate Code (Ref)

10-7

Generate Code (Top)
This task uses Embedded Coder to generate code for standalone use. By default, this task runs on the
top models in the project. Top models are models which are not referenced by any other models in the
project. The task returns the generated code report as an output file.

Note This task generates code but does not build executable files.

Task Instance Task Title in Process Advisor
padv.builtin.task.GenerateCodeAsTopModel Generate Code (Top)

Use the addTask function to add the task to the process model:

 addTask(pm,padv.builtin.task.GenerateCodeAsTopModel);

To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.GenerateCodeAsTopModel

10 Built-In Tasks — Alphabetical List

10-8

Generate SDD Report
This task uses Simulink Report Generator to generate a System Design Description (SDD) report from
a predefined template. The System Design Description report provides a summary or detailed
information about a system design represented by a model.

Task Instance Task Title in Process Advisor
padv.builtin.task.GenerateSDDReport Generate SDD Report

Use the addTask function to add the task to the process model:

 addTask(pm,padv.builtin.task.GenerateSDDReport);

To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.GenerateSDDReport

 Generate SDD Report

10-9

Generate Simulink Web View
This task uses the Simulink Report Generator to create a Web view for your models.

Task Instance Task Title in Process Advisor
padv.builtin.task.GenerateSimulinkWebView Generate Simulink Web View

Use the addTask function to add the task to the process model:

 addTask(pm,padv.builtin.task.GenerateSimulinkWebView);

To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.GenerateSimulinkWebView

10 Built-In Tasks — Alphabetical List

10-10

Inspect Code (Ref)
This task uses the Simulink Code Inspector to detect unintended functionality in your reference
models by establishing model-to-code and code-to-model traceability. The results of this task can help
you to satisfy code-review objectives in DO-178 and other high-integrity standards.

Task Instance Task Title in Process Advisor
padv.builtin.task.RunCodeInspection Inspect Code (Ref)

Use the addTask function to add the task to the process model and use the IsTopModel property to
specify that the task should inspect reference model code:

 addTask(pm,padv.builtin.task.RunCodeInspection("IsTopModel",false));

To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.RunCodeInspection

 Inspect Code (Ref)

10-11

Inspect Code (Top)
This task uses the Simulink Code Inspector to detect unintended functionality in your top models by
establishing model-to-code and code-to-model traceability. The results of this task can help you to
satisfy code-review objectives in DO-178 and other high-integrity standards.

Task Instance Task Title in Process Advisor
padv.builtin.task.RunCodeInspection Inspect Code (Top)

Use the addTask function to add the task to the process model and use the IsTopModel property to
specify that the task should inspect top model code:

 addTask(pm,padv.builtin.task.RunCodeInspection("IsTopModel",true));

To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.RunCodeInspection

10 Built-In Tasks — Alphabetical List

10-12

Merge Test Results
This task uses Simulink Test and Simulink Coverage to generate a consolidated test results report
and a merged coverage report for a model.

Task Instance Task Title in Process Advisor
padv.builtin.task.MergeTestResults Merge Test Results

Use the addTask function to add the task to the process model:

 addTask(pm,padv.builtin.task.MergeTestResults);

To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.MergeTestResults

 Merge Test Results

10-13

Run Tests (per model)
This task uses Simulink Test to run the test cases associated with your model. The task runs the test
cases on a model-by-model basis. The Process Advisor shows the name of each model under the
Run Tests task. Certain tests may generate code.

Task Instance Task Title in Process Advisor
padv.builtin.task.RunTestsPerModel Run Tests

Use the addTask function to add the task to the process model:

 addTask(pm,padv.builtin.task.RunTestsPerModel);

To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.RunTestsPerModel

10 Built-In Tasks — Alphabetical List

10-14

Run Tests (per test case)
This task uses Simulink Test to run the test cases associated with your model. The task runs the test
cases on a test-by-test basis. The Process Advisor shows the name of each test case under the Run
Tests task. Certain tests may generate code.

Task Instance Task Title in Process Advisor
padv.builtin.task.RunTestsPerTestCase Run Tests

Use the addTask function to add the task to the process model:

 addTask(pm,padv.builtin.task.RunTestsPerTestCase);

To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.RunTestsPerTestCase

 Run Tests (per test case)

10-15

Built-In Queries — Alphabetical List

The support package CI/CD Automation for Simulink Check contains several built-in queries that you
can use when you define your process. You can see a list of built-in queries when you type
padv.builtin.query. and use tab completion. The tab completion shows a list of the available
built-in queries.

The built-in queries include:

Query Instance Description
padv.builtin.query.FindArtifacts Returns each of the artifacts in project

that meet the specified criteria

For information, enter:

help padv.builtin.query.FindArtifacts

padv.builtin.query.FindFilesWithLabel Returns each of the files in the project
that have the specified project label and
project label category

padv.builtin.query.FindFileWithAddress Returns the file at the specified address
in the project

padv.builtin.query.FindModels Returns each of the models in the project
padv.builtin.query.FindModelsWithLabel Returns each of the models in the project

that have the specified project label and
project label category

padv.builtin.query.FindModelsWithTestCases Returns each of the models that are
associated with a test case

padv.builtin.query.FindProjectFile Returns the project file
padv.builtin.query.FindRefModels Returns each of the referenced models in

the project
padv.builtin.query.FindRequirements Returns each of the requirement sets

within a project
padv.builtin.query.FindRequirementsForModel Returns each of the requirement links

associated with a model
padv.builtin.query.FindTestCasesForModel Returns each of the test cases associated

with the models in the project
padv.builtin.query.FindTopModels Returns each of the top models in the

project
padv.builtin.query.GetDependentArtifacts Returns the dependent artifacts for the

specified artifact
padv.builtin.query.GetIterationArtifact Returns the artifact that the task is

iterating over

11

Query Instance Description
padv.builtin.query.GetOutputsOfDependentTask Returns the outputs from the immediate

dependent task

Note You can only specify certain queries as the input query of a task. For more information, see the
documentation for "padv.Task.addInputQueries" in the chapter "Classes — Alphabetical List".

11 Built-In Queries — Alphabetical List

11-2

Use Built-In Query to Find Artifacts in Project
You can use the built-in query padv.builtin.query.FindArtifacts to find project artifacts that
meet your specified criteria.

Use the arguments of padv.builtin.query.FindArtifacts to specify your search criteria. The
input arguments include:

• ArtifactType — Type of artifact, specified as a character vector. For example
'sl_model_file' for a Simulink model.

• IncludeLabel — Find artifacts with a specific project label, specified as a cell array where the
first entry is the project label category and the second entry is the project label name. For
example, {'Classification','Design'}.

• ExcludeLabel — Exclude artifacts with a specific project label, specified as a cell array where
the first entry is the project label category and the second entry is the project label name. For
example, {'Classification','Design'}.

• IncludePath — Find artifacts where the path contains specific text, specified as a character
vector. For example, 'HLR' to find artifacts where the path contains the text HLR.

• ExcludePath — Exclude artifacts where the path contains specific text, specified as a character
vector. For example, 'HLR' to exclude artifacts where the path contains the text HLR.

For example, suppose you want to find the artifacts in the project that use the project label Design
from the project label category Classification. You can create a
padv.builtin.query.FindArtifacts query object and use the IncludeLabel argument to
specify that the query should include artifacts with the specified the project label category and
project label name.

findDesignArtifacts = padv.builtin.query.FindArtifacts(...
IncludeLabel = {'Classification','Design'});

When you run the query, the artifacts are returned in the first cell of the output cell array.

queryOutput = run(findDesignArtifacts);
designArtifacts = queryOutput{1}

artifacts =

 1×24 Artifact array with properties:

 Type
 Parent
 Address
 UUID
 Label
 StorageAddress

Alternatively, you can use the ExcludeLabel argument to create a query that excludes artifacts that
use that label:

excludeDesignArtifacts = padv.builtin.query.FindArtifacts(...
ExcludeLabel = {'Classification','Design'});

queryOutput2 = run(excludeDesignArtifacts);
nonDesignArtifacts = queryOutput2{1};

 Use Built-In Query to Find Artifacts in Project

11-3

For more information, enter:

help padv.builtin.query.FindArtifacts

11 Built-In Queries — Alphabetical List

11-4

Version History

Supported Releases
and Updates

Support
Package
Update

Description

• R2022b Update 1
(and later updates)

• R2022a Update 4
(and later updates)

December
2022

Features:

• Automatically generate a pipeline configuration file for a
GitLab pipeline by using the new function
padv.pipeline.generatePipeline. For more
information, see the section "Integrate into a GitLab CI
System" or enter:

help padv.pipeline.generatePipeline

• Open the tool associated with a task by pointing to the
task in the Process Advisor app and clicking ... > Open
Tool Name.

• Automatically view detailed statuses, inputs, outputs, and
dependencies for tasks and task results shown in the
Process Advisor app.

• The built-in task Design Error Detection now outputs
the Simulink Design Verifier data file as an output in the
I/O column.

• Find artifacts in your project that meet specific search
criteria by using the new built-in query
padv.builtin.query.FindArtifacts.

For information, enter:

help padv.builtin.query.FindArtifacts

• Find requirement sets in your project and requirement
links to models by using the new built-in queries
padv.builtin.query.FindRequirements and
padv.builtin.query.FindRequirementsForModel,
respectively.

12

Supported Releases
and Updates

Support
Package
Update

Description

• R2022b Update 1
(and later updates)

• R2022a Update 4
(and later updates)

November
2022

Features:

• You can now open artifacts, in their associated tool,
directly from the Process Advisor app. In the Tasks
column, point to the name of an artifact and click the
hyperlink.

• If there is a new version of the support package available,
the Process Advisor app shows an update icon in the
bottom right corner.

• The built-in task for generating a Simulink Web view now
includes additional options like the ability to include user
notes and export models in subfolders. To view the source
code for the task, enter this code in the MATLAB
Command Window:

open padv.builtin.task.GenerateSimulinkWebView

Fixes:

• The Process Advisor app respects requests to cancel
artifact analysis.

• The tasks padv.builtin.task.AnalyzeRefModelCode
and padv.builtin.task.AnalyzeTopModelCode
return an error if Polyspace Bug Finder is either not
installed or not linked to the current MATLAB installation.

October 2022 Features:

• The support package now supports R2022b for Update 1
and later updates.

• Turn off incremental builds for a project by clearing the
Incremental Build check box in the Process Advisor
app. For more information, see the section "How to
Disable Incremental Builds".

• The build system and Process Advisor app take
advantage of runsAfter relationships when determining
the task execution order for tasks associated with the
project.

12 Version History

12-2

Supported Releases
and Updates

Support
Package
Update

Description

• R2022a Update 4
(and later updates)

September
2022

Features:

• You can create a new example project instance that
includes an example YAML file for configuring GitLab
pipelines:

processAdvisorGitLabExampleStart

The example YAML file, .gitlab-ci.yml, is in the
project root.

• You can create a new example project instance that
includes an example Jenkinsfile for configuring Jenkins
pipelines:

processAdvisorJenkinsExampleStart

The example Jenkinsfile, Jenkinsfile, is in the project
root.

• Test harnesses are now tracked as dependencies for test
cases.

• Externally-saved input or output baselines (including .mat
and Excel) are now tracked as dependencies for test cases.

Fixes:

• If you are using the project window and there is an error,
the error dialog is able to open the artifact listed in the
hyperlink.

August 2022 Initial release.

 Use Built-In Query to Find Artifacts in Project

12-3

	Get Started
	Fundamentals
	MBD Pipeline
	Build System
	Process Advisor app
	CI/CD System Integration

	Run Tasks Using Process Advisor
	Prequalify Changes Before Submitting to Source Control
	Quick Reference for Process Advisor App
	Process Advisor

	Icon Overview
	Task Column
	I/O Column
	Details Column

	Author Your Process Model
	About the Process Model
	Requirements
	Default Process Model
	Custom Process Models

	Create a Custom Process Model
	How to Author a Process
	Create and View a Process Model
	Define a Task
	Add a Task
	Add Inputs to a Task
	Reconfigure a Task
	Change Task Order and Dependencies

	How Tasks, Queries, and Task Iterations Create Results
	Example Process Models
	Add One Built-In Task and One Custom Task
	Specify a Task Execution Order
	Include Multiple Instances of a Task
	Run a Custom Task on Each Model in the Project

	Control Builds
	Run Tasks in MBD Pipeline Using Build System
	Incremental Builds
	How to Disable Incremental Builds

	Build System API
	Run Tasks in Pipeline
	View Available Tasks in Pipeline
	Generate Build Report

	Best Practices for Effective Builds

	Integrate into CI
	Prerequisites
	Integrate into a GitLab CI System
	Integrate Using Default Options
	Customize Child Pipeline

	Troubleshooting and Limitations
	Troubleshooting Missing Tasks or Artifacts
	Artifact Issues
	Resolve Path Issues
	Unsupported Modeling Constructs
	Other Limitations

	Limitations on Incremental Build

	Functions — Alphabetical List
	createprocess
	createProcessTaskID
	generateProcessTasks
	getprocess
	getProcessTaskResults
	processadvisor
	processAdvisorWindow
	runprocess

	Classes — Alphabetical List
	padv.Artifact
	padv.BuildResult
	padv.Preferences
	padv.ProcessModel
	padv.ProcessModel.addQuery
	padv.ProcessModel.addTask
	padv.Query
	padv.Task
	padv.Task.addInputQueries
	padv.Task.dependsOn
	padv.Task.run
	padv.Task.runsAfter
	padv.TaskResult
	padv.TaskResult.applyStatus

	Built-In Tasks — Alphabetical List
	Check Coding Standards (Ref)
	Check Coding Standards (Top)
	Check Modeling Standards
	Detect Design Errors
	Generate Code (Ref)
	Generate Code (Top)
	Generate SDD Report
	Generate Simulink Web View
	Inspect Code (Ref)
	Inspect Code (Top)
	Merge Test Results
	Run Tests (per model)
	Run Tests (per test case)

	Built-In Queries — Alphabetical List
	Use Built-In Query to Find Artifacts in Project

	Version History

