Main Content

CompactClassificationSVM

Compact support vector machine (SVM) for one-class and binary classification

Description

CompactClassificationSVMis a compact version of the support vector machine (SVM) classifier. The compact classifier does not include the data used for training the SVM classifier. Therefore, you cannot perform some tasks, such as cross-validation, using the compact classifier. Use a compact SVM classifier for tasks such as predicting the labels of new data.

Creation

Create aCompactClassificationSVMmodel from a full, trainedClassificationSVMclassifier by usingcompact.

Properties

expand all

SVM Properties

This property is read-only.

Trained classifier coefficients, specified as ans-by-1 numeric vector.sis the number of support vectors in the trained classifier,sum(Mdl.IsSupportVector).

Alphacontains the trained classifier coefficients from the dual problem, that is, the estimated Lagrange multipliers. If you remove duplicates by using theRemoveDuplicates名称-值pair argument offitcsvm, then for a given set of duplicate observations that are support vectors,Alphacontains one coefficient corresponding to the entire set. That is, MATLAB®attributes a nonzero coefficient to one observation from the set of duplicates and a coefficient of0to all other duplicate observations in the set.

Data Types:single|double

This property is read-only.

Linear predictor coefficients, specified as a numeric vector. The length ofBetais equal to the number of predictors used to train the model.

MATLAB expands categorical variables in the predictor data using full dummy encoding. That is, MATLAB creates one dummy variable for each level of each categorical variable.Beta大的es one value for each predictor variable, including the dummy variables. For example, if there are three predictors, one of which is a categorical variable with three levels, thenBetais a numeric vector containing five values.

IfKernelParameters.Functionis'linear', then the classification score for the observationxis

f ( x ) = ( x / s ) β + b .

Mdl大的esβ,b, andsin the propertiesBeta,Bias, andKernelParameters.Scale, respectively.

To estimate classification scores manually, you must first apply any transformations to the predictor data that were applied during training. Specifically, if you specify'Standardize',truewhen usingfitcsvm, then you must standardize the predictor data manually by using the meanMdl.Muand standard deviationMdl.Sigma, and then divide the result by the kernel scale inMdl.KernelParameters.Scale.

All SVM functions, such asresubPredictandpredict, apply any required transformation before estimation.

IfKernelParameters.Functionis not'linear', thenBetais empty ([]).

Data Types:single|double

This property is read-only.

Bias term, specified as a scalar.

Data Types:single|double

This property is read-only.

Kernel parameters, specified as a structure array. The kernel parameters property contains the fields listed in this table.

Field Description
Function

Kernel function used to compute the elements of theGram matrix. For details, see'KernelFunction'.

Scale

Kernel scale parameter used to scale all elements of the predictor data on which the model is trained. For details, see'KernelScale'.

To display the values ofKernelParameters, use dot notation. For example,Mdl.KernelParameters.Scaledisplays the kernel scale parameter value.

The software acceptsKernelParametersas inputs and does not modify them.

Data Types:struct

This property is read-only.

Support vector class labels, specified as ans-by-1 numeric vector.sis the number of support vectors in the trained classifier,sum(Mdl.IsSupportVector).

A value of+1inSupportVectorLabelsindicates that the corresponding support vector is in the positive class (ClassNames{2}). A value of–1indicates that the corresponding support vector is in the negative class (ClassNames{1}).

If you remove duplicates by using theRemoveDuplicates名称-值pair argument offitcsvm, then for a given set of duplicate observations that are support vectors,SupportVectorLabelscontains one unique support vector label.

Data Types:single|double

This property is read-only.

Support vectors in the trained classifier, specified as ans-by-p数字矩阵.sis the number of support vectors in the trained classifier,sum(Mdl.IsSupportVector), andpis the number of predictor variables in the predictor data.

SupportVectorscontains rows of the predictor dataXthat MATLAB considers to be support vectors. If you specify'Standardize',truewhen training the SVM classifier usingfitcsvm, thenSupportVectorscontains the standardized rows ofX.

If you remove duplicates by using theRemoveDuplicates名称-值pair argument offitcsvm, then for a given set of duplicate observations that are support vectors,SupportVectorscontains one unique support vector.

Data Types:single|double

Other Classification Properties

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers.CategoricalPredictorscontains index values indicating that the corresponding predictors are categorical. The index values are between 1 andp, wherepis the number of predictors used to train the model. If none of the predictors are categorical, then this property is empty ([]).

Data Types:double

This property is read-only.

Unique class labels used in training, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors.ClassNameshas the same data type as the class labelsY.(The software treats string arrays as cell arrays of character vectors.)ClassNamesalso determines the class order.

Data Types:single|double|logical|char|cell|categorical

This property is read-only.

Misclassification cost, specified as a numeric square matrix.

  • For two-class learning, theCostproperty stores the misclassification cost matrix specified by theCost名称-值argument of the fitting function. The rows correspond to the true class and the columns correspond to the predicted class. That is,Cost(i,j)is the cost of classifying a point into classjif its true class isi. The order of the rows and columns ofCostcorresponds to the order of the classes inClassNames.

  • For one-class learning,Cost = 0.

Data Types:double

This property is read-only.

Expanded predictor names, specified as a cell array of character vectors.

If the model uses dummy variable encoding for categorical variables, thenExpandedPredictorNames包括名称,描述了扩展变化ables. Otherwise,ExpandedPredictorNamesis the same asPredictorNames.

Data Types:cell

This property is read-only.

Predictor means, specified as a numeric vector. If you specify'Standardize',1or'Standardize',truewhen you train an SVM classifier usingfitcsvm, the length ofMuis equal to the number of predictors.

MATLAB expands categorical variables in the predictor data using dummy variables.Mu大的es one value for each predictor variable, including the dummy variables. However, MATLAB does not standardize the columns that contain categorical variables.

If you set'Standardize',false当你训练SVM分类器使用fitcsvm, thenMuis an empty vector ([]).

Data Types:single|double

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The order of the elements ofPredictorNamescorresponds to the order in which the predictor names appear in the training data.

Data Types:cell

This property is read-only.

Prior probabilities for each class, specified as a numeric vector.

For two-class learning, if you specify a cost matrix, then the software updates the prior probabilities by incorporating the penalties described in the cost matrix.

  • For two-class learning, the software normalizes the prior probabilities specified by thePrior名称-值argument of the fitting function so that the probabilities sum to 1. ThePrior属性存储规范化prior probabilities. The order of the elements ofPriorcorresponds to the elements ofMdl.ClassNames.

  • For one-class learning,Prior = 1.

Data Types:single|double

Score transformation, specified as a character vector or function handle.ScoreTransformrepresents a built-in transformation function or a function handle for transforming predicted classification scores.

To change the score transformation function tofunction, for example, use dot notation.

  • For a built-in function, enter a character vector.

    Mdl.ScoreTransform = 'function';

    This table describes the available built-in functions.

    Value Description
    'doublelogit' 1/(1 +e–2x)
    'invlogit' log(x/ (1 –x))
    'ismax' Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0
    'logit' 1/(1 +ex)
    'none'or'identity' x(no transformation)
    'sign' –1 forx< 0
    0 forx= 0
    1 forx> 0
    'symmetric' 2x– 1
    'symmetricismax' Sets the score for the class with the largest score to 1, and sets the scores for all other classes to –1
    'symmetriclogit' 2/(1 +ex) – 1

  • For a MATLAB function or a function that you define, enter its function handle.

    Mdl.ScoreTransform = @function;

    functionmust accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Data Types:char|function_handle

This property is read-only.

Predictor standard deviations, specified as a numeric vector.

If you specify'Standardize',true当你训练SVM分类器使用fitcsvm, the length ofSigmais equal to the number of predictor variables.

MATLAB expands categorical variables in the predictor data using dummy variables.Sigma大的es one value for each predictor variable, including the dummy variables. However, MATLAB does not standardize the columns that contain categorical variables.

If you set'Standardize',false当你训练SVM分类器使用fitcsvm, thenSigmais an empty vector ([]).

Data Types:single|double

Object Functions

compareHoldout Compare accuracies of two classification models using new data
discardSupportVectors Discard support vectors for linear support vector machine (SVM) classifier
edge Find classification edge for support vector machine (SVM) classifier
fitPosterior Fit posterior probabilities for compact support vector machine (SVM) classifier
gather Gather properties ofStatistics and Machine Learning Toolboxobject from GPU
incrementalLearner Convert binary classification support vector machine (SVM) model to incremental learner
lime Local interpretable model-agnostic explanations (LIME)
loss Find classification error for support vector machine (SVM) classifier
margin Find classification margins for support vector machine (SVM) classifier
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation (ICE) plots
predict Classify observations using support vector machine (SVM) classifier
shapley Shapley values
update Update model parameters for code generation

Examples

collapse all

Reduce the size of a full support vector machine (SVM) classifier by removing the training data. Full SVM classifiers (that is,ClassificationSVMclassifiers) hold the training data. To improve efficiency, use a smaller classifier.

Load theionospheredata set.

loadionosphere

Train an SVM classifier. Standardize the predictor data and specify the order of the classes.

SVMModel = fitcsvm(X,Y,'Standardize',true,...'ClassNames',{'b','g'})
SVMModel = ClassificationSVM ResponseName: 'Y' CategoricalPredictors: [] ClassNames: {'b' 'g'} ScoreTransform: 'none' NumObservations: 351 Alpha: [90x1 double] Bias: -0.1343 KernelParameters: [1x1 struct] Mu: [0.8917 0 0.6413 0.0444 0.6011 0.1159 0.5501 ... ] Sigma: [0.3112 0 0.4977 0.4414 0.5199 0.4608 0.4927 ... ] BoxConstraints: [351x1 double] ConvergenceInfo: [1x1 struct] IsSupportVector: [351x1 logical] Solver: 'SMO' Properties, Methods

SVMModelis aClassificationSVMclassifier.

Reduce the size of the SVM classifier.

CompactSVMModel = compact(SVMModel)
CompactSVMModel = CompactClassificationSVM ResponseName: 'Y' CategoricalPredictors: [] ClassNames: {'b' 'g'} ScoreTransform: 'none' Alpha: [90x1 double] Bias: -0.1343 KernelParameters: [1x1 struct] Mu: [0.8917 0 0.6413 0.0444 0.6011 0.1159 0.5501 ... ] Sigma: [0.3112 0 0.4977 0.4414 0.5199 0.4608 0.4927 ... ] SupportVectors: [90x34 double] SupportVectorLabels: [90x1 double] Properties, Methods

CompactSVMModelis aCompactClassificationSVMclassifier.

Display the amount of memory used by each classifier.

whos('SVMModel','CompactSVMModel')
Name Size Bytes Class Attributes CompactSVMModel 1x1 31058 classreg.learning.classif.CompactClassificationSVM SVMModel 1x1 141148 ClassificationSVM

The full SVM classifier (SVMModel) is more than four times larger than the compact SVM classifier (CompactSVMModel).

To label new observations efficiently, you can removeSVMModelfrom the MATLAB® Workspace, and then passCompactSVMModeland new predictor values topredict.

To further reduce the size of the compact SVM classifier, use thediscardSupportVectorsfunction to discard support vectors.

Load theionospheredata set.

loadionosphere

Train and cross-validate an SVM classifier. Standardize the predictor data and specify the order of the classes.

rng(1);% For reproducibilityCVSVMModel = fitcsvm(X,Y,'Standardize',true,...'ClassNames',{'b','g'},'CrossVal','on')
CVSVMModel = ClassificationPartitionedModel CrossValidatedModel: 'SVM' PredictorNames: {1x34 cell} ResponseName: 'Y' NumObservations: 351 KFold: 10 Partition: [1x1 cvpartition] ClassNames: {'b' 'g'} ScoreTransform: 'none' Properties, Methods

CVSVMModelis aClassificationPartitionedModelcross-validated SVM classifier. By default, the software implements 10-fold cross-validation.

Alternatively, you can cross-validate a trainedClassificationSVMclassifier by passing it tocrossval.

Inspect one of the trained folds using dot notation.

CVSVMModel。训练有素的{1}
ans = CompactClassificationSVM ResponseName: 'Y' CategoricalPredictors: [] ClassNames: {'b' 'g'} ScoreTransform: 'none' Alpha: [78x1 double] Bias: -0.2210 KernelParameters: [1x1 struct] Mu: [0.8888 0 0.6320 0.0406 0.5931 0.1205 0.5361 ... ] Sigma: [0.3149 0 0.5033 0.4441 0.5255 0.4663 0.4987 ... ] SupportVectors: [78x34 double] SupportVectorLabels: [78x1 double] Properties, Methods

Each fold is aCompactClassificationSVMclassifier trained on 90% of the data.

Estimate the generalization error.

genError = kfoldLoss(CVSVMModel)
genError = 0.1168

On average, the generalization error is approximately 12%.

References

[1] Hastie, T., R. Tibshirani, and J. Friedman.The Elements of Statistical Learning, Second Edition. NY: Springer, 2008.

[2] Scholkopf, B., J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C. Williamson. “Estimating the Support of a High-Dimensional Distribution.”Neural Computation. Vol. 13, Number 7, 2001, pp. 1443–1471.

[3] Christianini, N., and J. C. Shawe-Taylor.An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge University Press, 2000.

[4] Scholkopf, B., and A. Smola.Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond, Adaptive Computation and Machine Learning.Cambridge, MA: The MIT Press, 2002.

Extended Capabilities

Version History

Introduced in R2014a

expand all

Baidu
map