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MATLAB Product Description
Millions of engineers and scientists worldwide use MATLAB to analyze and design the systems and
products transforming our world. MATLAB is in automobile active safety systems, interplanetary
spacecraft, health monitoring devices, smart power grids, and LTE cellular networks. It is used for
machine learning, signal processing, image processing, computer vision, communications,
computational finance, control design, robotics, and much more.

Math. Graphics. Programming.

The MATLAB platform is optimized for solving engineering and scientific problems. The matrix-based
MATLAB language is the world’s most natural way to express computational mathematics. Built-in
graphics make it easy to visualize and gain insights from data. A vast library of pre-built toolboxes
lets you get started right away with algorithms essential to your domain. The desktop environment
invites experimentation, exploration, and discovery. These MATLAB tools and capabilities are all
rigorously tested and designed to work together.

Scale. Integrate. Deploy.

MATLAB helps you take your ideas beyond the desktop. You can run your analyses on larger data
sets, and scale up to clusters and clouds. MATLAB code can be integrated with other languages,
enabling you to deploy algorithms and applications within web, enterprise, and production systems.

Key Features
• High-level language for scientific and engineering computing
• Desktop environment tuned for iterative exploration, design, and problem-solving
• Graphics for visualizing data and tools for creating custom plots
• Apps for curve fitting, data classification, signal analysis, control system tuning, and many other

tasks
• Add-on toolboxes for a wide range of engineering and scientific applications
• Tools for building applications with custom user interfaces
• Interfaces to C/C++, Java®, .NET, Python, SQL, Hadoop, and Microsoft® Excel®

• Royalty-free deployment options for sharing MATLAB programs with end users

1 Quick Start
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Desktop Basics
When you start MATLAB, the desktop appears in its default layout.

The desktop includes these panels:

• Current Folder — Access your files.
• Command Window — Enter commands at the command line, indicated by the prompt (>>).
• Workspace — Explore data that you create or import from files.

As you work in MATLAB, you issue commands that create variables and call functions. For example,
create a variable named a by typing this statement at the command line:

a = 1

MATLAB adds variable a to the workspace and displays the result in the Command Window.

a = 

     1

Create a few more variables.

b = 2

b = 

     2

c = a + b

c = 

     3

d = cos(a)

 Desktop Basics
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d = 

    0.5403

When you do not specify an output variable, MATLAB uses the variable ans, short for answer, to
store the results of your calculation.

sin(a)

ans =

    0.8415

If you end a statement with a semicolon, MATLAB performs the computation, but suppresses the
display of output in the Command Window.

e = a*b;

You can recall previous commands by pressing the up- and down-arrow keys, ↑ and ↓. Press the
arrow keys either at an empty command line or after you type the first few characters of a command.
For example, to recall the command b = 2, type b, and then press the up-arrow key.

1 Quick Start

1-4



Matrices and Arrays

MATLAB is an abbreviation for "matrix laboratory." While other programming languages mostly work
with numbers one at a time, MATLAB® is designed to operate primarily on whole matrices and
arrays.

All MATLAB variables are multidimensional arrays, no matter what type of data. A matrix is a two-
dimensional array often used for linear algebra.

Array Creation

To create an array with four elements in a single row, separate the elements with either a comma (,)
or a space.

a = [1 2 3 4]

a = 1×4

     1     2     3     4

This type of array is a row vector.

To create a matrix that has multiple rows, separate the rows with semicolons.

a = [1 3 5; 2 4 6; 7 8 10]

a = 3×3

     1     3     5
     2     4     6
     7     8    10

Another way to create a matrix is to use a function, such as ones, zeros, or rand. For example,
create a 5-by-1 column vector of zeros.

z = zeros(5,1)

z = 5×1

     0
     0
     0
     0
     0

Matrix and Array Operations

MATLAB allows you to process all of the values in a matrix using a single arithmetic operator or
function.

a + 10

ans = 3×3

 Matrices and Arrays
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    11    13    15
    12    14    16
    17    18    20

sin(a)

ans = 3×3

    0.8415    0.1411   -0.9589
    0.9093   -0.7568   -0.2794
    0.6570    0.9894   -0.5440

To transpose a matrix, use a single quote ('):

a'

ans = 3×3

     1     2     7
     3     4     8
     5     6    10

You can perform standard matrix multiplication, which computes the inner products between rows
and columns, using the * operator. For example, confirm that a matrix times its inverse returns the
identity matrix:

p = a*inv(a)

p = 3×3

    1.0000    0.0000   -0.0000
         0    1.0000   -0.0000
         0    0.0000    1.0000

Notice that p is not a matrix of integer values. MATLAB stores numbers as floating-point values, and
arithmetic operations are sensitive to small differences between the actual value and its floating-point
representation. You can display more decimal digits using the format command:

format long
p = a*inv(a)

p = 3×3

   0.999999999999996   0.000000000000007  -0.000000000000002
                   0   1.000000000000000  -0.000000000000003
                   0   0.000000000000014   0.999999999999995

Reset the display to the shorter format using

format short

format affects only the display of numbers, not the way MATLAB computes or saves them.

To perform element-wise multiplication rather than matrix multiplication, use the .* operator:
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p = a.*a

p = 3×3

     1     9    25
     4    16    36
    49    64   100

The matrix operators for multiplication, division, and power each have a corresponding array
operator that operates element-wise. For example, raise each element of a to the third power:

a.^3

ans = 3×3

           1          27         125
           8          64         216
         343         512        1000

Concatenation

Concatenation is the process of joining arrays to make larger ones. In fact, you made your first array
by concatenating its individual elements. The pair of square brackets [] is the concatenation
operator.

A = [a,a]

A = 3×6

     1     3     5     1     3     5
     2     4     6     2     4     6
     7     8    10     7     8    10

Concatenating arrays next to one another using commas is called horizontal concatenation. Each
array must have the same number of rows. Similarly, when the arrays have the same number of
columns, you can concatenate vertically using semicolons.

A = [a; a]

A = 6×3

     1     3     5
     2     4     6
     7     8    10
     1     3     5
     2     4     6
     7     8    10

Complex Numbers

Complex numbers have both real and imaginary parts, where the imaginary unit is the square root of
-1.

sqrt(-1)
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ans = 0.0000 + 1.0000i

To represent the imaginary part of complex numbers, use either i or j.

c = [3+4i, 4+3j; -i, 10j]

c = 2×2 complex

   3.0000 + 4.0000i   4.0000 + 3.0000i
   0.0000 - 1.0000i   0.0000 +10.0000i
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Array Indexing

Every variable in MATLAB® is an array that can hold many numbers. When you want to access
selected elements of an array, use indexing.

For example, consider the 4-by-4 matrix A:

A = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]

A = 4×4

     1     2     3     4
     5     6     7     8
     9    10    11    12
    13    14    15    16

There are two ways to refer to a particular element in an array. The most common way is to specify
row and column subscripts, such as

A(4,2)

ans = 14

Less common, but sometimes useful, is to use a single subscript that traverses down each column in
order:

A(8)

ans = 14

Using a single subscript to refer to a particular element in an array is called linear indexing.

If you try to refer to elements outside an array on the right side of an assignment statement, MATLAB
throws an error.

test = A(4,5)

Index in position 2 exceeds array bounds (must not exceed 4).

However, on the left side of an assignment statement, you can specify elements outside the current
dimensions. The size of the array increases to accommodate the newcomers.

A(4,5) = 17

A = 4×5

     1     2     3     4     0
     5     6     7     8     0
     9    10    11    12     0
    13    14    15    16    17

To refer to multiple elements of an array, use the colon operator, which allows you to specify a range
of the form start:end. For example, list the elements in the first three rows and the second column
of A:

 Array Indexing

1-9



A(1:3,2)

ans = 3×1

     2
     6
    10

The colon alone, without start or end values, specifies all of the elements in that dimension. For
example, select all the columns in the third row of A:

A(3,:)

ans = 1×5

     9    10    11    12     0

The colon operator also allows you to create an equally spaced vector of values using the more
general form start:step:end.

B = 0:10:100

B = 1×11

     0    10    20    30    40    50    60    70    80    90   100

If you omit the middle step, as in start:end, MATLAB uses the default step value of 1.
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Workspace Variables
The workspace contains variables that you create within or import into MATLAB from data files or
other programs. For example, these statements create variables A and B in the workspace.

A = magic(4);
B = rand(3,5,2);

You can view the contents of the workspace using whos.

whos

  Name      Size             Bytes  Class     Attributes

  A         4x4                128  double              
  B         3x5x2              240  double              

The variables also appear in the Workspace pane on the desktop.

Workspace variables do not persist after you exit MATLAB. Save your data for later use with the save
command,

save myfile.mat

Saving preserves the workspace in your current working folder in a compressed file with a .mat
extension, called a MAT-file.

To clear all the variables from the workspace, use the clear command.

Restore data from a MAT-file into the workspace using load.

load myfile.mat
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Text and Characters

Text in String Arrays
When you are working with text, enclose sequences of characters in double quotes. You can assign
text to a variable.

t = "Hello, world";

If the text includes double quotes, use two double quotes within the definition.

q = "Something ""quoted"" and something else."

q = 

    "Something "quoted" and something else."

t and q are arrays, like all MATLAB variables. Their class or data type is string.

whos t

  Name        Size            Bytes  Class     Attributes
  t           1x1               174  string   

To add text to the end of a string, use the plus operator, +.

f = 71;
c = (f-32)/1.8;
tempText = "Temperature is " + c + "C"

tempText = 
"Temperature is 21.6667C"

Similar to numeric arrays, string arrays can have multiple elements. Use the strlength function to
find the length of each string within an array.

A = ["a","bb","ccc"; "dddd","eeeeee","fffffff"]

A = 
  2×3 string array
    "a"       "bb"        "ccc"    
    "dddd"    "eeeeee"    "fffffff"

strlength(A)

ans =

     1     2     3
     4     6     7

Data in Character Arrays
Sometimes characters represent data that does not correspond to text, such as a DNA sequence. You
can store this type of data in a character array, which has data type char. Character arrays use
single quotes.
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seq = 'GCTAGAATCC';
whos seq

  Name      Size            Bytes  Class    Attributes
  seq       1x10               20  char               

Each element of the array contains a single character.

seq(4)

ans = 
    'A'

Concatenate character arrays with square brackets, just as you concatenate numeric arrays.

seq2 = [seq 'ATTAGAAACC']

seq2 =
    'GCTAGAATCCATTAGAAACC'

Character arrays are common in programs that were written before the introduction of double quotes
for string creation in R2017a. All MATLAB functions that accept string data also accept char data,
and vice versa.
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Calling Functions

MATLAB® provides a large number of functions that perform computational tasks. Functions are
equivalent to subroutines or methods in other programming languages.

To call a function, such as max, enclose its input arguments in parentheses:

A = [1 3 5];
max(A)

ans = 5

If there are multiple input arguments, separate them with commas:

B = [3 6 9];
union(A,B)

ans = 1×5

     1     3     5     6     9

Return output from a function by assigning it to a variable:

maxA = max(A)

maxA = 5

When there are multiple output arguments, enclose them in square brackets:

[minA,maxA] = bounds(A)

minA = 1

maxA = 5

Enclose any text inputs in quotes:

disp("hello world")

hello world

To call a function that does not require any inputs and does not return any outputs, type only the
function name:

clc

The clc function clears the Command Window.
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2-D and 3-D Plots

Line Plots

To create two-dimensional line plots, use the plot function. For example, plot the sine function over
a linearly spaced vector of values from 0 to 2π:

x = linspace(0,2*pi);
y = sin(x);
plot(x,y)

You can label the axes and add a title.

xlabel("x")
ylabel("sin(x)")
title("Plot of the Sine Function")
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By adding a third input argument to the plot function, you can plot the same variables using a red
dashed line.

plot(x,y,"r--")
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"r--" is a line specification. Each specification can include characters for the line color, style, and
marker. A marker is a symbol that appears at each plotted data point, such as a +, o, or *. For
example, "g:*" requests a dotted green line with * markers.

Notice that the titles and labels that you defined for the first plot are no longer in the current figure
window. By default, MATLAB® clears the figure each time you call a plotting function, resetting the
axes and other elements to prepare the new plot.

To add plots to an existing figure, use hold on. Until you use hold off or close the window, all
plots appear in the current figure window.

x = linspace(0,2*pi);
y = sin(x);
plot(x,y)

hold on

y2 = cos(x);
plot(x,y2,":")
legend("sin","cos")
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hold off

3-D Plots

Three-dimensional plots typically display a surface defined by a function in two variables, z = f (x, y).
For instance, calculate z = xe−x2− y2 given row and column vectors x and y with 20 points each in the
range [-2,2].

x = linspace(-2,2,20);
y = x';
z = x .* exp(-x.^2 - y.^2);

Then, create a surface plot.

surf(x,y,z)
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Both the surf function and its companion mesh display surfaces in three dimensions. surf displays
both the connecting lines and the faces of the surface in color. mesh produces wireframe surfaces
that color only the connecting lines.

Multiple Plots

You can display multiple plots in different parts of the same window using either tiledlayout or
subplot.

The tiledlayout function was introduced in R2019b and provides more control over labels and
spacing than subplot. For example, create a 2-by-2 layout within a figure window. Then, call
nexttile each time you want a plot to appear in the next region.

t = tiledlayout(2,2);
title(t,"Trigonometric Functions")
x = linspace(0,30);

nexttile
plot(x,sin(x))
title("Sine")

 2-D and 3-D Plots

1-19



nexttile
plot(x,cos(x))
title("Cosine")

nexttile
plot(x,tan(x))
title("Tangent")

nexttile
plot(x,sec(x))
title("Secant")

If you are using a release earlier than R2019b, see subplot.
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Programming and Scripts

In this section...
“Scripts” on page 1-21
“Live Scripts” on page 1-22
“Loops and Conditional Statements” on page 1-22
“Script Locations” on page 1-23

The simplest type of MATLAB program is called a script. A script is a file that contains multiple
sequential lines of MATLAB commands and function calls. You can run a script by typing its name at
the command line.

Scripts
To create a script, use the edit command,

edit mysphere

This command opens a blank file named mysphere.m. Enter some code that creates a unit sphere,
doubles the radius, and plots the results:

[x,y,z] = sphere; 
r = 2;
surf(x*r,y*r,z*r)
axis equal

Next, add code that calculates the surface area and volume of a sphere:

A = 4*pi*r^2;
V = (4/3)*pi*r^3;

Whenever you write code, it is a good practice to add comments that describe the code. Comments
enable others to understand your code and can refresh your memory when you return to it later. Add
comments using the percent (%) symbol.

% Create and plot a sphere with radius r.
[x,y,z] = sphere;       % Create a unit sphere.
r = 2;
surf(x*r,y*r,z*r)       % Adjust each dimension and plot.
axis equal              % Use the same scale for each axis. 
 
% Find the surface area and volume.
A = 4*pi*r^2;
V = (4/3)*pi*r^3;

Save the file in the current folder. To run the script, type its name at the command line:

mysphere

You can also run scripts from the Editor using the Run button, .
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Live Scripts
Instead of writing code and comments in plain text, you can use formatting options in live scripts to
enhance your code. Live scripts allow you to view and interact with both code and output and can
include formatted text, equations, and images.

For example, convert mysphere to a live script by selecting Save As and changing the file type to a
MATLAB live code file (*.mlx). Then, replace the code comments with formatted text. For instance:

• Convert the comment lines to text. Select each line that begins with a percent symbol, and then

select Text, . Remove the percent symbols.
• Rewrite the text to replace the comments at the end of code lines. To apply a monospace font to

function names in the text, select . To add an equation, select Equation on the Insert tab.

To create a new live script using the edit command, include the .mlx extension with the file name:

edit newfile.mlx

Loops and Conditional Statements
Within any script, you can define sections of code that either repeat in a loop or conditionally execute.
Loops use a for or while keyword, and conditional statements use if or switch.

Loops are useful for creating sequences. For example, create a script named fibseq that uses a for
loop to calculate the first 100 numbers of the Fibonacci sequence. In this sequence, the first two
numbers are 1, and each subsequent number is the sum of the previous two, Fn = Fn-1 + Fn-2.
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N = 100;
f(1) = 1;
f(2) = 1;

for n = 3:N
    f(n) = f(n-1) + f(n-2);
end
f(1:10)

When you run the script, the for statement defines a counter named n that starts at 3. Then, the loop
repeatedly assigns to f(n), incrementing n on each execution until it reaches 100. The last command
in the script, f(1:10), displays the first 10 elements of f.

ans =
     1     1     2     3     5     8    13    21    34    55 

Conditional statements execute only when given expressions are true. For example, assign a value to
a variable depending on the size of a random number: 'low', 'medium', or 'high'. In this case, the
random number is an integer between 1 and 100.

num = randi(100)
if num < 34
   sz = 'low'
elseif num < 67
   sz = 'medium'
else
   sz = 'high'
end

The statement sz = 'high' only executes when num is greater than or equal to 67.

Script Locations
MATLAB looks for scripts and other files in certain places. To run a script, the file must be in the
current folder or in a folder on the search path.

By default, the MATLAB folder that the MATLAB Installer creates is on the search path. If you want to
store and run programs in another folder, add it to the search path. Select the folder in the Current
Folder browser, right-click, and then select Add to Path.
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Help and Documentation
All MATLAB functions have supporting documentation that includes examples and describes the
function inputs, outputs, and calling syntax. There are several ways to access this information from
the command line:

• Open the function documentation in a separate window using the doc command.

doc mean
• Display function hints (the syntax portion of the function documentation) in the Command Window

by pausing after you type the open parentheses for the function input arguments.

mean(
• View an abbreviated text version of the function documentation in the Command Window using

the help command.

help mean

Access the complete product documentation by clicking the help icon .

1 Quick Start

1-24



Language Fundamentals

• “Matrices and Magic Squares” on page 2-2
• “Expressions” on page 2-7
• “Entering Commands” on page 2-12
• “Indexing” on page 2-14
• “Types of Arrays” on page 2-19
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Matrices and Magic Squares

In this section...
“About Matrices” on page 2-2
“Entering Matrices” on page 2-3
“sum, transpose, and diag” on page 2-4
“The magic Function” on page 2-5
“Generating Matrices” on page 2-6

About Matrices

In the MATLAB environment, a matrix is a rectangular array of numbers. Special meaning is
sometimes attached to 1-by-1 matrices, which are scalars, and to matrices with only one row or
column, which are vectors. MATLAB has other ways of storing both numeric and nonnumeric data,
but in the beginning, it is usually best to think of everything as a matrix. The operations in MATLAB
are designed to be as natural as possible. Where other programming languages work with numbers
one at a time, MATLAB allows you to work with entire matrices quickly and easily. A good example
matrix, used throughout this book, appears in the Renaissance engraving Melencolia I by the German
artist and amateur mathematician Albrecht Dürer.
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This image is filled with mathematical symbolism, and if you look carefully, you will see a matrix in
the upper-right corner. This matrix is known as a magic square and was believed by many in Dürer's
time to have genuinely magical properties. It does turn out to have some fascinating characteristics
worth exploring.

Entering Matrices
The best way for you to get started with MATLAB is to learn how to handle matrices. Start MATLAB
and follow along with each example.

You can enter matrices into MATLAB in several different ways:

• Enter an explicit list of elements.
• Load matrices from external data files.
• Generate matrices using built-in functions.
• Create matrices with your own functions and save them in files.

Start by entering Dürer's matrix as a list of its elements. You only have to follow a few basic
conventions:

• Separate the elements of a row with blanks or commas.
• Use a semicolon, ; , to indicate the end of each row.
• Surround the entire list of elements with square brackets, [ ].

To enter Dürer's matrix, simply type in the Command Window

A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

MATLAB displays the matrix you just entered:

A = 
    16     3     2    13
     5    10    11     8
     9     6     7    12
     4    15    14     1
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This matrix matches the numbers in the engraving. Once you have entered the matrix, it is
automatically remembered in the MATLAB workspace. You can refer to it simply as A. Now that you
have A in the workspace, take a look at what makes it so interesting. Why is it magic?

sum, transpose, and diag
You are probably already aware that the special properties of a magic square have to do with the
various ways of summing its elements. If you take the sum along any row or column, or along either
of the two main diagonals, you will always get the same number. Let us verify that using MATLAB.
The first statement to try is

sum(A)

MATLAB replies with

ans =
    34    34    34    34

When you do not specify an output variable, MATLAB uses the variable ans, short for answer, to
store the results of a calculation. You have computed a row vector containing the sums of the columns
of A. Each of the columns has the same sum, the magic sum, 34.

How about the row sums? MATLAB has a preference for working with the columns of a matrix, so one
way to get the row sums is to transpose the matrix, compute the column sums of the transpose, and
then transpose the result.

MATLAB has two transpose operators. The apostrophe operator (for example, A') performs a complex
conjugate transposition. It flips a matrix about its main diagonal, and also changes the sign of the
imaginary component of any complex elements of the matrix. The dot-apostrophe operator (A.'),
transposes without affecting the sign of complex elements. For matrices containing all real elements,
the two operators return the same result.

So

A'

produces

ans =
    16     5     9     4
     3    10     6    15
     2    11     7    14
    13     8    12     1

and

sum(A')'

produces a column vector containing the row sums

ans =
    34
    34
    34
    34

2 Language Fundamentals

2-4



For an additional way to sum the rows that avoids the double transpose use the dimension argument
for the sum function:

sum(A,2)

produces

ans =
    34
    34
    34
    34

The sum of the elements on the main diagonal is obtained with the sum and the diag functions:

diag(A)

produces

ans =
    16
    10
     7
     1

and

sum(diag(A))

produces

ans =
    34

The other diagonal, the so-called antidiagonal, is not so important mathematically, so MATLAB does
not have a ready-made function for it. But a function originally intended for use in graphics, fliplr,
flips a matrix from left to right:

sum(diag(fliplr(A)))
ans =
    34

You have verified that the matrix in Dürer's engraving is indeed a magic square and, in the process,
have sampled a few MATLAB matrix operations. The following sections continue to use this matrix to
illustrate additional MATLAB capabilities.

The magic Function
MATLAB actually has a built-in function that creates magic squares of almost any size. Not
surprisingly, this function is named magic:

B = magic(4)
B = 
    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1
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This matrix is almost the same as the one in the Dürer engraving and has all the same “magic”
properties; the only difference is that the two middle columns are exchanged.

You can swap the two middle columns of B to look like Dürer's A. For each row of B, rearrange the
columns in the order specified by 1, 3, 2, 4:

A = B(:,[1 3 2 4])

A = 
    16     3     2    13
     5    10    11     8
     9     6     7    12
     4    15    14     1

Generating Matrices
MATLAB software provides four functions that generate basic matrices.

zeros All zeros
ones All ones
rand Uniformly distributed random elements
randn Normally distributed random elements

Here are some examples:

Z = zeros(2,4)
Z =
     0     0     0     0
     0     0     0     0

F = 5*ones(3,3)
F =
     5     5     5
     5     5     5
     5     5     5

N = fix(10*rand(1,10))
N =
     9     2     6     4     8     7     4     0     8     4

R = randn(4,4)
R =
    0.6353    0.0860   -0.3210   -1.2316
   -0.6014   -2.0046    1.2366    1.0556
    0.5512   -0.4931   -0.6313   -0.1132
   -1.0998    0.4620   -2.3252    0.3792
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Expressions
In this section...
“Variables” on page 2-7
“Numbers” on page 2-7
“Matrix Operators” on page 2-8
“Array Operators” on page 2-9
“Functions” on page 2-10
“Examples of Expressions” on page 2-11

Variables
Like most other programming languages, the MATLAB language provides mathematical expressions,
but unlike most programming languages, these expressions involve entire matrices.

MATLAB does not require any type declarations or dimension statements. When MATLAB encounters
a new variable name, it automatically creates the variable and allocates the appropriate amount of
storage. If the variable already exists, MATLAB changes its contents and, if necessary, allocates new
storage. For example,

num_students = 25

creates a 1-by-1 matrix named num_students and stores the value 25 in its single element. To view
the matrix assigned to any variable, simply enter the variable name.

Variable names consist of a letter, followed by any number of letters, digits, or underscores. MATLAB
is case sensitive; it distinguishes between uppercase and lowercase letters. A and a are not the same
variable.

Although variable names can be of any length, MATLAB uses only the first N characters of the name,
(where N is the number returned by the function namelengthmax), and ignores the rest. Hence, it is
important to make each variable name unique in the first N characters to enable MATLAB to
distinguish variables.

N = namelengthmax
N =
    63

Numbers
MATLAB uses conventional decimal notation, with an optional decimal point and leading plus or
minus sign, for numbers. Scientific notation uses the letter e to specify a power-of-ten scale factor.
Imaginary numbers use either i or j as a suffix. Some examples of legal numbers are

3              -99            0.0001
9.6397238      1.60210e-20    6.02252e23
1i             -3.14159j      3e5i

MATLAB stores all numbers internally using the long format specified by the IEEE® floating-point
standard. Floating-point numbers have a finite precision of roughly 16 significant decimal digits and a
finite range of roughly 10-308 to 10+308.
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Numbers represented in the double format have a maximum precision of 52 bits. Any double
requiring more bits than 52 loses some precision. For example, the following code shows two unequal
values to be equal because they are both truncated:

x = 36028797018963968;
y = 36028797018963972;
x == y
ans =
      1

Integers have available precisions of 8-bit, 16-bit, 32-bit, and 64-bit. Storing the same numbers as 64-
bit integers preserves precision:

x = uint64(36028797018963968);
y = uint64(36028797018963972);
x == y
ans =
      0

MATLAB software stores the real and imaginary parts of a complex number. It handles the magnitude
of the parts in different ways depending on the context. For instance, the sort function sorts based
on magnitude and resolves ties by phase angle.

sort([3+4i, 4+3i])
ans =
   4.0000 + 3.0000i   3.0000 + 4.0000i

This is because of the phase angle:

angle(3+4i)
ans =
    0.9273
angle(4+3i)
ans =
    0.6435 

The “equal to” relational operator == requires both the real and imaginary parts to be equal. The
other binary relational operators > <, >=, and <= ignore the imaginary part of the number and
consider the real part only.

Matrix Operators
Expressions use familiar arithmetic operators and precedence rules.

+ Addition
- Subtraction
* Multiplication
/ Division
\ Left division
^ Power
' Complex conjugate transpose
( ) Specify evaluation order
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Array Operators
When they are taken away from the world of linear algebra, matrices become two-dimensional
numeric arrays. Arithmetic operations on arrays are done element by element. This means that
addition and subtraction are the same for arrays and matrices, but that multiplicative operations are
different. MATLAB uses a dot, or decimal point, as part of the notation for multiplicative array
operations.

The list of operators includes

+ Addition
- Subtraction
.* Element-by-element multiplication
./ Element-by-element division
.\ Element-by-element left division
.^ Element-by-element power
.' Unconjugated array transpose

If the Dürer magic square is multiplied by itself with array multiplication

A.*A

the result is an array containing the squares of the integers from 1 to 16, in an unusual order:

ans =
   256     9     4   169
    25   100   121    64
    81    36    49   144
    16   225   196     1

Building Tables

Array operations are useful for building tables. Suppose n is the column vector

n = (0:9)';

Then

pows = [n  n.^2  2.^n]

builds a table of squares and powers of 2:

pows =
     0     0     1
     1     1     2
     2     4     4
     3     9     8
     4    16    16
     5    25    32
     6    36    64
     7    49   128
     8    64   256
     9    81   512

The elementary math functions operate on arrays element by element. So
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format short g
x = (1:0.1:2)';
logs = [x log10(x)]

builds a table of logarithms.

 logs =
      1.0            0 
      1.1      0.04139
      1.2      0.07918
      1.3      0.11394
      1.4      0.14613
      1.5      0.17609
      1.6      0.20412
      1.7      0.23045
      1.8      0.25527
      1.9      0.27875
      2.0      0.30103

Functions
MATLAB provides a large number of standard elementary mathematical functions, including abs,
sqrt, exp, and sin. Taking the square root or logarithm of a negative number is not an error; the
appropriate complex result is produced automatically. MATLAB also provides many more advanced
mathematical functions, including Bessel and gamma functions. Most of these functions accept
complex arguments. For a list of the elementary mathematical functions, type

help elfun

For a list of more advanced mathematical and matrix functions, type

help specfun
help elmat

Some of the functions, like sqrt and sin, are built in. Built-in functions are part of the MATLAB core
so they are very efficient, but the computational details are not readily accessible. Other functions
are implemented in the MATLAB programing language, so their computational details are accessible.

There are some differences between built-in functions and other functions. For example, for built-in
functions, you cannot see the code. For other functions, you can see the code and even modify it if
you want.

Several special functions provide values of useful constants.

pi 3.14159265...
i Imaginary unit, −1
j Same as i
eps Floating-point relative precision, ε = 2−52

realmin Smallest floating-point number, 2−1022

realmax Largest floating-point number, (2− ε)21023

Inf Infinity
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NaN Not-a-number

Infinity is generated by dividing a nonzero value by zero, or by evaluating well defined mathematical
expressions that overflow, that is, exceed realmax. Not-a-number is generated by trying to evaluate
expressions like 0/0 or Inf-Inf that do not have well defined mathematical values.

The function names are not reserved. It is possible to overwrite any of them with a new variable, such
as

eps = 1.e-6

and then use that value in subsequent calculations. The original function can be restored with

clear eps

Examples of Expressions
You have already seen several examples of MATLAB expressions. Here are a few more examples, and
the resulting values:

rho = (1+sqrt(5))/2
rho =
    1.6180

a = abs(3+4i)
a =
     5

z = sqrt(besselk(4/3,rho-i))
z =
   0.3730+ 0.3214i

huge = exp(log(realmax))
huge =
  1.7977e+308

toobig = pi*huge
toobig =
   Inf

 Expressions
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Entering Commands
In this section...
“The format Function” on page 2-12
“Suppressing Output” on page 2-13
“Entering Long Statements” on page 2-13
“Command Line Editing” on page 2-13

The format Function
The format function controls the numeric format of the values displayed. The function affects only
how numbers are displayed, not how MATLAB software computes or saves them. Here are the
different formats, together with the resulting output produced from a vector x with components of
different magnitudes.

Note To ensure proper spacing, use a fixed-width font, such as Courier.

x = [4/3 1.2345e-6]

format short

   1.3333    0.0000

format short e

   1.3333e+000  1.2345e-006

format short g

   1.3333  1.2345e-006

format long

   1.33333333333333   0.00000123450000

format long e

   1.333333333333333e+000    1.234500000000000e-006

format long g

   1.33333333333333               1.2345e-006

format bank

   1.33          0.00

format rat

   4/3          1/810045

format hex
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   3ff5555555555555   3eb4b6231abfd271

If the largest element of a matrix is larger than 103 or smaller than 10-3, MATLAB applies a common
scale factor for the short and long formats.

In addition to the format functions shown above

format compact

suppresses many of the blank lines that appear in the output. This lets you view more information on
a screen or window. If you want more control over the output format, use the sprintf and fprintf
functions.

Suppressing Output
If you simply type a statement and press Return or Enter, MATLAB automatically displays the
results on screen. However, if you end the line with a semicolon, MATLAB performs the computation,
but does not display any output. This is particularly useful when you generate large matrices. For
example,

A = magic(100);

Entering Long Statements
If a statement does not fit on one line, use an ellipsis (three periods), ..., followed by Return or
Enter to indicate that the statement continues on the next line. For example,

s = 1 -1/2 + 1/3 -1/4 + 1/5 - 1/6 + 1/7 ...
      - 1/8 + 1/9 - 1/10 + 1/11 - 1/12;

Blank spaces around the =, +, and - signs are optional, but they improve readability.

Command Line Editing
Various arrow and control keys on your keyboard allow you to recall, edit, and reuse statements you
have typed earlier. For example, suppose you mistakenly enter

rho = (1 + sqt(5))/2

You have misspelled sqrt. MATLAB responds with

Undefined function 'sqt' for input arguments of type 'double'.

Instead of retyping the entire line, simply press the ↑ key. The statement you typed is redisplayed.
Use the ← key to move the cursor over and insert the missing r. Repeated use of the ↑ key recalls
earlier lines. Typing a few characters, and then pressing the ↑ key finds a previous line that begins
with those characters. You can also copy previously executed statements from the Command History.
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Indexing

In this section...
“Subscripts” on page 2-14
“The Colon Operator” on page 2-15
“Concatenation” on page 2-16
“Deleting Rows and Columns” on page 2-16
“Scalar Expansion” on page 2-17
“Logical Subscripting” on page 2-17
“The find Function” on page 2-18

Subscripts
The element in row i and column j of A is denoted by A(i,j). For example, A(4,2) is the number in
the fourth row and second column. For the magic square, A(4,2) is 15. So to compute the sum of the
elements in the fourth column of A, type

A(1,4) + A(2,4) + A(3,4) + A(4,4)

This subscript produces

ans =
     34

but is not the most elegant way of summing a single column.

It is also possible to refer to the elements of a matrix with a single subscript, A(k). A single subscript
is the usual way of referencing row and column vectors. However, it can also apply to a fully two-
dimensional matrix, in which case the array is regarded as one long column vector formed from the
columns of the original matrix. So, for the magic square, A(8) is another way of referring to the
value 15 stored in A(4,2).

If you try to use the value of an element outside of the matrix, it is an error:

t = A(4,5)

Index exceeds matrix dimensions.

Conversely, if you store a value in an element outside of the matrix, the size increases to
accommodate the newcomer:

X = A;
X(4,5) = 17

X =
    16     3     2    13     0
     5    10    11     8     0
     9     6     7    12     0
     4    15    14     1    17
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The Colon Operator
The colon, :, is one of the most important MATLAB operators. It occurs in several different forms.
The expression

1:10

is a row vector containing the integers from 1 to 10:

1     2     3     4     5     6     7     8     9    10

To obtain nonunit spacing, specify an increment. For example,

100:-7:50

is

100    93    86    79    72    65    58    51

and

0:pi/4:pi

is

0    0.7854    1.5708    2.3562    3.1416

Subscript expressions involving colons refer to portions of a matrix:

A(1:k,j)

is the first k elements of the jth column of A. Thus,

sum(A(1:4,4))

computes the sum of the fourth column. However, there is a better way to perform this computation.
The colon by itself refers to all the elements in a row or column of a matrix and the keyword end
refers to the last row or column. Thus,

sum(A(:,end))

computes the sum of the elements in the last column of A:

ans =
     34

Why is the magic sum for a 4-by-4 square equal to 34? If the integers from 1 to 16 are sorted into four
groups with equal sums, that sum must be

sum(1:16)/4

which, of course, is

ans =
     34
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Concatenation
Concatenation is the process of joining small matrices to make bigger ones. In fact, you made your
first matrix by concatenating its individual elements. The pair of square brackets, [], is the
concatenation operator. For an example, start with the 4-by-4 magic square, A, and form

B = [A  A+32; A+48  A+16]

The result is an 8-by-8 matrix, obtained by joining the four submatrices:

B =

    16     3     2    13    48    35    34    45
     5    10    11     8    37    42    43    40
     9     6     7    12    41    38    39    44
     4    15    14     1    36    47    46    33
    64    51    50    61    32    19    18    29
    53    58    59    56    21    26    27    24
    57    54    55    60    25    22    23    28
    52    63    62    49    20    31    30    17

This matrix is halfway to being another magic square. Its elements are a rearrangement of the
integers 1:64. Its column sums are the correct value for an 8-by-8 magic square:

sum(B)

ans =
   260   260   260   260   260   260   260   260

But its row sums, sum(B')', are not all the same. Further manipulation is necessary to make this a
valid 8-by-8 magic square.

Deleting Rows and Columns
You can delete rows and columns from a matrix using just a pair of square brackets. Start with

X = A;

Then, to delete the second column of X, use

X(:,2) = []

This changes X to

X =
    16     2    13
     5    11     8 
     9     7    12
     4    14     1

If you delete a single element from a matrix, the result is not a matrix anymore. So, expressions like

X(1,2) = []

result in an error. However, using a single subscript deletes a single element, or sequence of
elements, and reshapes the remaining elements into a row vector. So

X(2:2:10) = []
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results in

X =
    16     9     2     7    13    12     1

Scalar Expansion
Matrices and scalars can be combined in several different ways. For example, a scalar is subtracted
from a matrix by subtracting it from each element. The average value of the elements in our magic
square is 8.5, so

B = A - 8.5

forms a matrix whose column sums are zero:

B =
      7.5     -5.5     -6.5      4.5
     -3.5      1.5      2.5     -0.5
      0.5     -2.5     -1.5      3.5
     -4.5      6.5      5.5     -7.5

sum(B)

ans =
     0     0     0     0

With scalar expansion, MATLAB assigns a specified scalar to all indices in a range. For example,

B(1:2,2:3) = 0

zeros out a portion of B:

B =
      7.5        0        0      4.5
     -3.5        0        0     -0.5
      0.5     -2.5     -1.5      3.5
     -4.5      6.5      5.5     -7.5

Logical Subscripting
The logical vectors created from logical and relational operations can be used to reference subarrays.
Suppose X is an ordinary matrix and L is a matrix of the same size that is the result of some logical
operation. Then X(L) specifies the elements of X where the elements of L are nonzero.

This kind of subscripting can be done in one step by specifying the logical operation as the
subscripting expression. Suppose you have the following set of data:

x = [2.1 1.7 1.6 1.5 NaN 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8];

The NaN is a marker for a missing observation, such as a failure to respond to an item on a
questionnaire. To remove the missing data with logical indexing, use isfinite(x), which is true for
all finite numerical values and false for NaN and Inf:

x = x(isfinite(x))
x =
  2.1 1.7 1.6 1.5 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8
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Now there is one observation, 5.1, which seems to be very different from the others. It is an outlier.
The following statement removes outliers, in this case those elements more than three standard
deviations from the mean:

x = x(abs(x-mean(x)) <= 3*std(x))
x =
  2.1 1.7 1.6 1.5 1.9 1.8 1.5 1.8 1.4 2.2 1.6 1.8

For another example, highlight the location of the prime numbers in Dürer's magic square by using
logical indexing and scalar expansion to set the nonprimes to 0. (See “The magic Function” on page
2-5.)

A(~isprime(A)) = 0

A =
     0     3     2    13
     5     0    11     0
     0     0     7     0
     0     0     0     0

The find Function
The find function determines the indices of array elements that meet a given logical condition. In its
simplest form, find returns a column vector of indices. Transpose that vector to obtain a row vector
of indices. For example, start again with Dürer's magic square. (See “The magic Function” on page 2-
5.)

k = find(isprime(A))'

picks out the locations, using one-dimensional indexing, of the primes in the magic square:

k =
     2     5     9    10    11    13

Display those primes, as a row vector in the order determined by k, with

A(k)

ans =
     5     3     2    11     7    13

When you use k as a left-side index in an assignment statement, the matrix structure is preserved:

A(k) = NaN

A =
    16   NaN   NaN   NaN
   NaN    10   NaN     8
     9     6   NaN    12
     4    15    14     1
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Types of Arrays
In this section...
“Multidimensional Arrays” on page 2-19
“Cell Arrays” on page 2-21
“Characters and Text” on page 2-22
“Structures” on page 2-24

Multidimensional Arrays

Multidimensional arrays in the MATLAB environment are arrays with more than two subscripts. One
way of creating a multidimensional array is by calling zeros, ones, rand, or randn with more than
two arguments. For example,

R = randn(3,4,5);

creates a 3-by-4-by-5 array with a total of 3*4*5 = 60 normally distributed random elements.

A three-dimensional array might represent three-dimensional physical data, say the temperature in a
room, sampled on a rectangular grid. Or it might represent a sequence of matrices, A(k), or samples of
a time-dependent matrix, A(t). In these latter cases, the (i, j)th element of the kth matrix, or the tkth
matrix, is denoted by A(i,j,k).

MATLAB and Dürer's versions of the magic square of order 4 differ by an interchange of two columns.
Many different magic squares can be generated by interchanging columns. The statement

p = perms(1:4);

generates the 4! = 24 permutations of 1:4. The kth permutation is the row vector p(k,:). Then

A = magic(4);
M = zeros(4,4,24);

for k = 1:24
   M(:,:,k) = A(:,p(k,:));
end

stores the sequence of 24 magic squares in a three-dimensional array, M. The size of M is

size(M)

ans =
     4     4    24
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Note The order of the matrices shown in this illustration might differ from your results. The perms
function always returns all permutations of the input vector, but the order of the permutations might
be different for different MATLAB versions.

The statement

sum(M,d)

computes sums by varying the dth subscript. So

sum(M,1)

is a 1-by-4-by-24 array containing 24 copies of the row vector

34    34    34    34

and

sum(M,2)

is a 4-by-1-by-24 array containing 24 copies of the column vector

34    
34    
34    
34

Finally,

S = sum(M,3)

adds the 24 matrices in the sequence. The result has size 4-by-4-by-1, so it looks like a 4-by-4 array:

S =
   204   204   204   204
   204   204   204   204
   204   204   204   204
   204   204   204   204
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Cell Arrays
Cell arrays in MATLAB are multidimensional arrays whose elements are copies of other arrays. A cell
array of empty matrices can be created with the cell function. But, more often, cell arrays are
created by enclosing a miscellaneous collection of things in curly braces, {}. The curly braces are
also used with subscripts to access the contents of various cells. For example,

C = {A sum(A) prod(prod(A))}

produces a 1-by-3 cell array. The three cells contain the magic square, the row vector of column
sums, and the product of all its elements. When C is displayed, you see

C = 
    [4x4 double]    [1x4 double]    [20922789888000]

This is because the first two cells are too large to print in this limited space, but the third cell
contains only a single number, 16!, so there is room to print it.

Here are two important points to remember. First, to retrieve the contents of one of the cells, use
subscripts in curly braces. For example, C{1} retrieves the magic square and C{3} is 16!. Second,
cell arrays contain copies of other arrays, not pointers to those arrays. If you subsequently change A,
nothing happens to C.

You can use three-dimensional arrays to store a sequence of matrices of the same size. Cell arrays
can be used to store a sequence of matrices of different sizes. For example,

M = cell(8,1);
for n = 1:8
   M{n} = magic(n);
end
M

produces a sequence of magic squares of different order:

M = 
    [           1]
    [ 2x2  double]
    [ 3x3  double]
    [ 4x4  double]
    [ 5x5  double]
    [ 6x6  double]
    [ 7x7  double]
    [ 8x8  double]
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You can retrieve the 4-by-4 magic square matrix with

M{4}

Characters and Text
Enter text into MATLAB using single quotes. For example,

s = 'Hello'

The result is not the same kind of numeric matrix or array you have been dealing with up to now. It is
a 1-by-5 character array.

Internally, the characters are stored as numbers, but not in floating-point format. The statement

a = double(s)

converts the character array to a numeric matrix containing floating-point representations of the
ASCII codes for each character. The result is

a =
    72    101    108    108    111

The statement

s = char(a)
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reverses the conversion.

Converting numbers to characters makes it possible to investigate the various fonts available on your
computer. The printable characters in the basic ASCII character set are represented by the integers
32:127. (The integers less than 32 represent nonprintable control characters.) These integers are
arranged in an appropriate 6-by-16 array with

F = reshape(32:127,16,6)';

The printable characters in the extended ASCII character set are represented by F+128. When these
integers are interpreted as characters, the result depends on the font currently being used. Type the
statements

char(F)
char(F+128)

and then vary the font being used for the Command Window. To change the font, on the Home tab, in
the Environment section, click Preferences > Fonts. If you include tabs in lines of code, use a
fixed-width font, such as Monospaced, to align the tab positions on different lines.

Concatenation with square brackets joins text variables together. The statement

h = [s, ' world']

joins the characters horizontally and produces

h =
   Hello world

The statement

v = [s; 'world']

joins the characters vertically and produces

v =
   Hello
   world

Notice that a blank has to be inserted before the 'w' in h and that both words in v have to have the
same length. The resulting arrays are both character arrays; h is 1-by-11 and v is 2-by-5.

To manipulate a body of text containing lines of different lengths, you have two choices—a padded
character array or a cell array of character vectors. When creating a character array, you must make
each row of the array the same length. (Pad the ends of the shorter rows with spaces.) The char
function does this padding for you. For example,

S = char('A','rolling','stone','gathers','momentum.')

produces a 5-by-9 character array:

S =
A        
rolling  
stone    
gathers  
momentum.
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Alternatively, you can store the text in a cell array. For example,

C = {'A';'rolling';'stone';'gathers';'momentum.'}

creates a 5-by-1 cell array that requires no padding because each row of the array can have a
different length:

C = 
    'A'
    'rolling'
    'stone'
    'gathers'
    'momentum.'

You can convert a padded character array to a cell array of character vectors with

C = cellstr(S)

and reverse the process with

S = char(C)

Structures
Structures are multidimensional MATLAB arrays with elements accessed by textual field designators.
For example,

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'

creates a scalar structure with three fields:

S = 
     name: 'Ed Plum'
    score: 83
    grade: 'B+'

Like everything else in the MATLAB environment, structures are arrays, so you can insert additional
elements. In this case, each element of the array is a structure with several fields. The fields can be
added one at a time,

S(2).name = 'Toni Miller';
S(2).score = 91;
S(2).grade = 'A-';

or an entire element can be added with a single statement:

S(3) = struct('name','Jerry Garcia',... 
               'score',70,'grade','C')

Now the structure is large enough that only a summary is printed:

S = 
1x3 struct array with fields:
    name
    score
    grade
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There are several ways to reassemble the various fields into other MATLAB arrays. They are mostly
based on the notation of a comma-separated list. If you type

S.score

it is the same as typing

S(1).score, S(2).score, S(3).score

which is a comma-separated list.

If you enclose the expression that generates such a list within square brackets, MATLAB stores each
item from the list in an array. In this example, MATLAB creates a numeric row vector containing the
score field of each element of structure array S:

scores = [S.score]
scores =
    83    91    70

avg_score = sum(scores)/length(scores)
avg_score =
   81.3333

To create a character array from one of the text fields (name, for example), call the char function on
the comma-separated list produced by S.name:

names = char(S.name)
names =
   Ed Plum    
   Toni Miller
   Jerry Garcia

Similarly, you can create a cell array from the name fields by enclosing the list-generating expression
within curly braces:

names = {S.name}
names = 
    'Ed Plum'    'Toni Miller'    'Jerry Garcia'

To assign the fields of each element of a structure array to separate variables outside of the structure,
specify each output to the left of the equals sign, enclosing them all within square brackets:

[N1 N2 N3] = S.name
N1 =
   Ed Plum
N2 =
   Toni Miller
N3 =
   Jerry Garcia

Dynamic Field Names

The most common way to access the data in a structure is by specifying the name of the field that you
want to reference. Another means of accessing structure data is to use dynamic field names. These
names express the field as a variable expression that MATLAB evaluates at run time. The dot-
parentheses syntax shown here makes expression a dynamic field name:

structName.(expression)
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Index into this field using the standard MATLAB indexing syntax. For example, to evaluate
expression into a field name and obtain the values of that field at columns 1 through 25 of row 7,
use

structName.(expression)(7,1:25)

Dynamic Field Names Example

The avgscore function shown below computes an average test score, retrieving information from the
testscores structure using dynamic field names:

function avg = avgscore(testscores, student, first, last)
for k = first:last
   scores(k) = testscores.(student).week(k);
end
avg = sum(scores)/(last - first + 1);

You can run this function using different values for the dynamic field student. First, initialize the
structure that contains scores for a 25-week period:

testscores.Ann_Lane.week(1:25) = ...
  [95 89 76 82 79 92 94 92 89 81 75 93 ...
   85 84 83 86 85 90 82 82 84 79 96 88 98];

testscores.William_King.week(1:25) = ...
  [87 80 91 84 99 87 93 87 97 87 82 89 ...
   86 82 90 98 75 79 92 84 90 93 84 78 81];

Now run avgscore, supplying the students name fields for the testscores structure at run time
using dynamic field names:

avgscore(testscores, 'Ann_Lane', 7, 22)
ans = 
   85.2500

avgscore(testscores, 'William_King', 7, 22)
ans = 
   87.7500
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Mathematics

• “Linear Algebra” on page 3-2
• “Operations on Nonlinear Functions” on page 3-35
• “Multivariate Data” on page 3-38
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Linear Algebra
In this section...
“Matrices in the MATLAB Environment” on page 3-2
“Systems of Linear Equations” on page 3-10
“Factorizations” on page 3-19
“Powers and Exponentials” on page 3-24
“Eigenvalues” on page 3-28
“Singular Values” on page 3-30

Matrices in the MATLAB Environment
This topic contains an introduction to creating matrices and performing basic matrix calculations in
MATLAB.

The MATLAB environment uses the term matrix to indicate a variable containing real or complex
numbers arranged in a two-dimensional grid. An array is, more generally, a vector, matrix, or higher
dimensional grid of numbers. All arrays in MATLAB are rectangular, in the sense that the component
vectors along any dimension are all the same length. The mathematical operations defined on
matrices are the subject of linear algebra.

Creating Matrices

MATLAB has many functions that create different kinds of matrices. For example, you can create a
symmetric matrix with entries based on Pascal's triangle:

A = pascal(3)

A =
       1     1     1
       1     2     3
       1     3     6

Or, you can create an unsymmetric magic square matrix, which has equal row and column sums:

B = magic(3)

B =
       8     1     6
       3     5     7
       4     9     2

Another example is a 3-by-2 rectangular matrix of random integers. In this case the first input to
randi describes the range of possible values for the integers, and the second two inputs describe the
number of rows and columns.

C = randi(10,3,2)

C =

     9    10
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    10     7
     2     1

A column vector is an m-by-1 matrix, a row vector is a 1-by-n matrix, and a scalar is a 1-by-1 matrix.
To define a matrix manually, use square brackets [ ] to denote the beginning and end of the array.
Within the brackets, use a semicolon ; to denote the end of a row. In the case of a scalar (1-by-1
matrix), the brackets are not required. For example, these statements produce a column vector, a row
vector, and a scalar:

u = [3; 1; 4]

v = [2 0 -1]

s = 7

u =
       3
       1
       4

v =
       2     0    -1

s =
       7

For more information about creating and working with matrices, see “Creating, Concatenating, and
Expanding Matrices”.

Adding and Subtracting Matrices

Addition and subtraction of matrices and arrays is performed element-by-element, or element-wise.
For example, adding A to B and then subtracting A from the result recovers B:

X = A + B

X =
       9     2     7
       4     7    10
       5    12     8

Y = X - A

Y =
       8     1     6
       3     5     7
       4     9     2

Addition and subtraction require both matrices to have compatible dimensions. If the dimensions are
incompatible, an error results:

X = A + C

Error using  + 
Matrix dimensions must agree.

For more information, see “Array vs. Matrix Operations”.
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Vector Products and Transpose

A row vector and a column vector of the same length can be multiplied in either order. The result is
either a scalar, called the inner product, or a matrix, called the outer product:

u = [3; 1; 4];
v = [2 0 -1];
x = v*u

x =

     2

X = u*v

X =

     6     0    -3
     2     0    -1
     8     0    -4

For real matrices, the transpose operation interchanges aij and aji. For complex matrices, another
consideration is whether to take the complex conjugate of complex entries in the array to form the
complex conjugate transpose. MATLAB uses the apostrophe operator (') to perform a complex
conjugate transpose, and the dot-apostrophe operator (.') to transpose without conjugation. For
matrices containing all real elements, the two operators return the same result.

The example matrix A = pascal(3) is symmetric, so A' is equal to A. However, B = magic(3) is
not symmetric, so B' has the elements reflected along the main diagonal:

B = magic(3)

B =

     8     1     6
     3     5     7
     4     9     2

X = B'

X =

     8     3     4
     1     5     9
     6     7     2

For vectors, transposition turns a row vector into a column vector (and vice-versa):

x = v'

x =
       2
       0
      -1

If x and y are both real column vectors, then the product x*y is not defined, but the two products

x'*y
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and

y'*x

produce the same scalar result. This quantity is used so frequently, it has three different names: inner
product, scalar product, or dot product. There is even a dedicated function for dot products named
dot.

For a complex vector or matrix, z, the quantity z' not only transposes the vector or matrix, but also
converts each complex element to its complex conjugate. That is, the sign of the imaginary part of
each complex element changes. For example, consider the complex matrix

z = [1+2i 7-3i 3+4i; 6-2i 9i 4+7i]

z =

   1.0000 + 2.0000i   7.0000 - 3.0000i   3.0000 + 4.0000i
   6.0000 - 2.0000i   0.0000 + 9.0000i   4.0000 + 7.0000i

The complex conjugate transpose of z is:

z'

ans =

   1.0000 - 2.0000i   6.0000 + 2.0000i
   7.0000 + 3.0000i   0.0000 - 9.0000i
   3.0000 - 4.0000i   4.0000 - 7.0000i

The unconjugated complex transpose, where the complex part of each element retains its sign, is
denoted by z.':

z.'

ans =

   1.0000 + 2.0000i   6.0000 - 2.0000i
   7.0000 - 3.0000i   0.0000 + 9.0000i
   3.0000 + 4.0000i   4.0000 + 7.0000i

For complex vectors, the two scalar products x'*y and y'*x are complex conjugates of each other,
and the scalar product x'*x of a complex vector with itself is real.

Multiplying Matrices

Multiplication of matrices is defined in a way that reflects composition of the underlying linear
transformations and allows compact representation of systems of simultaneous linear equations. The
matrix product C = AB is defined when the column dimension of A is equal to the row dimension of B,
or when one of them is a scalar. If A is m-by-p and B is p-by-n, their product C is m-by-n. The product
can actually be defined using MATLAB for loops, colon notation, and vector dot products:

A = pascal(3);
B = magic(3);
m = 3; 
n = 3;
for i = 1:m
     for j = 1:n
        C(i,j) = A(i,:)*B(:,j);
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     end
end

MATLAB uses an asterisk to denote matrix multiplication, as in C = A*B. Matrix multiplication is not
commutative; that is, A*B is typically not equal to B*A:

X = A*B

X =
      15    15    15
      26    38    26
      41    70    39

Y = B*A

Y =
      15    28    47
      15    34    60
      15    28    43

A matrix can be multiplied on the right by a column vector and on the left by a row vector:

u = [3; 1; 4];
x = A*u

x =

     8
    17
    30

v = [2 0 -1];
y = v*B

y =

    12    -7    10

Rectangular matrix multiplications must satisfy the dimension compatibility conditions. Since A is 3-
by-3 and C is 3-by-2, you can multiply them to get a 3-by-2 result (the common inner dimension
cancels):

X = A*C

X =

    24    17
    47    42
    79    77

However, the multiplication does not work in the reverse order:

Y = C*A

Error using  * 
Incorrect dimensions for matrix multiplication. Check that the number of columns 
in the first matrix matches the number of rows in the second matrix. To perform 
elementwise multiplication, use '.*'.

You can multiply anything with a scalar:
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s = 10;
w = s*y

w =

   120   -70   100

When you multiply an array by a scalar, the scalar implicitly expands to be the same size as the other
input. This is often referred to as scalar expansion.

Identity Matrix

Generally accepted mathematical notation uses the capital letter I to denote identity matrices,
matrices of various sizes with ones on the main diagonal and zeros elsewhere. These matrices have
the property that AI = A and IA = A whenever the dimensions are compatible.

The original version of MATLAB could not use I for this purpose because it did not distinguish
between uppercase and lowercase letters and i already served as a subscript and as the complex unit.
So an English language pun was introduced. The function

eye(m,n)

returns an m-by-n rectangular identity matrix and eye(n) returns an n-by-n square identity matrix.

Matrix Inverse

If a matrix A is square and nonsingular (nonzero determinant), then the equations AX = I and XA = I
have the same solution X. This solution is called the inverse of A and is denoted A-1. The inv function
and the expression A^-1 both compute the matrix inverse.

A = pascal(3)

A =
       1     1     1
       1     2     3
       1     3     6

X = inv(A)

X =

    3.0000   -3.0000    1.0000
   -3.0000    5.0000   -2.0000
    1.0000   -2.0000    1.0000

A*X

ans =

    1.0000         0         0
    0.0000    1.0000   -0.0000
   -0.0000    0.0000    1.0000

The determinant calculated by det is a measure of the scaling factor of the linear transformation
described by the matrix. When the determinant is exactly zero, the matrix is singular and no inverse
exists.

d = det(A)
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d =

     1

Some matrices are nearly singular, and despite the fact that an inverse matrix exists, the calculation
is susceptible to numerical errors. The cond function computes the condition number for inversion,
which gives an indication of the accuracy of the results from matrix inversion. The condition number
ranges from 1 for a numerically stable matrix to Inf for a singular matrix.

c = cond(A)

c =

   61.9839

It is seldom necessary to form the explicit inverse of a matrix. A frequent misuse of inv arises when
solving the system of linear equations Ax = b. The best way to solve this equation, from the
standpoint of both execution time and numerical accuracy, is to use the matrix backslash operator x
= A\b. See mldivide for more information.

Kronecker Tensor Product

The Kronecker product, kron(X,Y), of two matrices is the larger matrix formed from all possible
products of the elements of X with those of Y. If X is m-by-n and Y is p-by-q, then kron(X,Y) is mp-
by-nq. The elements are arranged such that each element of X is multiplied by the entire matrix Y:

[X(1,1)*Y  X(1,2)*Y  . . .  X(1,n)*Y
                     . . .
 X(m,1)*Y  X(m,2)*Y  . . .  X(m,n)*Y]

The Kronecker product is often used with matrices of zeros and ones to build up repeated copies of
small matrices. For example, if X is the 2-by-2 matrix

X = [1   2
     3   4]

and I = eye(2,2) is the 2-by-2 identity matrix, then:

kron(X,I)

ans =

     1     0     2     0
     0     1     0     2
     3     0     4     0
     0     3     0     4

and

kron(I,X)

ans =

     1     2     0     0
     3     4     0     0
     0     0     1     2
     0     0     3     4
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Aside from kron, some other functions that are useful to replicate arrays are repmat, repelem, and
blkdiag.

Vector and Matrix Norms

The p-norm of a vector x,

x p = ∑ xi
p 1 p ,

is computed by norm(x,p). This operation is defined for any value of p > 1, but the most common
values of p are 1, 2, and ∞. The default value is p = 2, which corresponds to Euclidean length or
vector magnitude:

v = [2 0 -1];
[norm(v,1) norm(v) norm(v,inf)]

ans =

    3.0000    2.2361    2.0000

The p-norm of a matrix A,

A p = max
x

Ax p
x p

,

can be computed for p = 1, 2, and ∞ by norm(A,p). Again, the default value is p = 2:

A = pascal(3);
[norm(A,1) norm(A) norm(A,inf)]

ans =

   10.0000    7.8730   10.0000

In cases where you want to calculate the norm of each row or column of a matrix, you can use
vecnorm:

vecnorm(A)

ans =

    1.7321    3.7417    6.7823

Using Multithreaded Computation with Linear Algebra Functions

MATLAB supports multithreaded computation for a number of linear algebra and element-wise
numerical functions. These functions automatically execute on multiple threads. For a function or
expression to execute faster on multiple CPUs, a number of conditions must be true:

1 The function performs operations that easily partition into sections that execute concurrently.
These sections must be able to execute with little communication between processes. They
should require few sequential operations.

2 The data size is large enough so that any advantages of concurrent execution outweigh the time
required to partition the data and manage separate execution threads. For example, most
functions speed up only when the array contains several thousand elements or more.
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3 The operation is not memory-bound; processing time is not dominated by memory access time. As
a general rule, complicated functions speed up more than simple functions.

The matrix multiply (X*Y) and matrix power (X^p) operators show significant increase in speed on
large double-precision arrays (on order of 10,000 elements). The matrix analysis functions det,
rcond, hess, and expm also show significant increase in speed on large double-precision arrays.

Systems of Linear Equations
• “Computational Considerations” on page 3-10
• “General Solution” on page 3-11
• “Square Systems” on page 3-11
• “Overdetermined Systems” on page 3-13
• “Underdetermined Systems” on page 3-15
• “Solving for Several Right-Hand Sides” on page 3-17
• “Iterative Methods” on page 3-18
• “Multithreaded Computation” on page 3-18

Computational Considerations

One of the most important problems in technical computing is the solution of systems of simultaneous
linear equations.

In matrix notation, the general problem takes the following form: Given two matrices A and b, does
there exist a unique matrix x, so that Ax= b or xA= b?

It is instructive to consider a 1-by-1 example. For example, does the equation

7x = 21

have a unique solution?

The answer, of course, is yes. The equation has the unique solution x = 3. The solution is easily
obtained by division:

x = 21/7 = 3.

The solution is not ordinarily obtained by computing the inverse of 7, that is 7–1= 0.142857..., and
then multiplying 7–1 by 21. This would be more work and, if 7–1 is represented to a finite number of
digits, less accurate. Similar considerations apply to sets of linear equations with more than one
unknown; MATLAB solves such equations without computing the inverse of the matrix.

Although it is not standard mathematical notation, MATLAB uses the division terminology familiar in
the scalar case to describe the solution of a general system of simultaneous equations. The two
division symbols, slash, /, and backslash, \, correspond to the two MATLAB functions mrdivide and
mldivide. These operators are used for the two situations where the unknown matrix appears on the
left or right of the coefficient matrix:

x = b/A Denotes the solution to the matrix equation xA = b, obtained using
mrdivide.
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x = A\b Denotes the solution to the matrix equation Ax = b, obtained using
mldivide.

Think of “dividing” both sides of the equation Ax = b or xA = b by A. The coefficient matrix A is
always in the “denominator.”

The dimension compatibility conditions for x = A\b require the two matrices A and b to have the
same number of rows. The solution x then has the same number of columns as b and its row
dimension is equal to the column dimension of A. For x = b/A, the roles of rows and columns are
interchanged.

In practice, linear equations of the form Ax = b occur more frequently than those of the form xA = b.
Consequently, the backslash is used far more frequently than the slash. The remainder of this section
concentrates on the backslash operator; the corresponding properties of the slash operator can be
inferred from the identity:

(b/A)' = (A'\b').

The coefficient matrix A need not be square. If A has size m-by-n, then there are three cases:

m = n Square system. Seek an exact solution.
m > n Overdetermined system, with more equations than unknowns. Find a

least-squares solution.
m < n Underdetermined system, with fewer equations than unknowns. Find

a basic solution with at most m nonzero components.

The mldivide Algorithm

The mldivide operator employs different solvers to handle different kinds of coefficient matrices.
The various cases are diagnosed automatically by examining the coefficient matrix. For more
information, see the “Algorithms” section of the mldivide reference page.

General Solution

The general solution to a system of linear equations Ax= b describes all possible solutions. You can
find the general solution by:

1 Solving the corresponding homogeneous system Ax = 0. Do this using the null command, by
typing null(A). This returns a basis for the solution space to Ax = 0. Any solution is a linear
combination of basis vectors.

2 Finding a particular solution to the nonhomogeneous system Ax =b.

You can then write any solution to Ax= b as the sum of the particular solution to Ax =b, from step 2,
plus a linear combination of the basis vectors from step 1.

The rest of this section describes how to use MATLAB to find a particular solution to Ax =b, as in step
2.

Square Systems

The most common situation involves a square coefficient matrix A and a single right-hand side column
vector b.
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Nonsingular Coefficient Matrix

If the matrix A is nonsingular, then the solution, x = A\b, is the same size as b. For example:

A = pascal(3);
u = [3; 1; 4];
x = A\u

x =
      10
     -12
       5

It can be confirmed that A*x is exactly equal to u.

If A and b are square and the same size, x= A\b is also that size:

b = magic(3);
X = A\b

X =
      19    -3    -1
     -17     4    13
       6     0    -6

It can be confirmed that A*x is exactly equal to b.

Both of these examples have exact, integer solutions. This is because the coefficient matrix was
chosen to be pascal(3), which is a full rank matrix (nonsingular).
Singular Coefficient Matrix

A square matrix A is singular if it does not have linearly independent columns. If A is singular, the
solution to Ax = b either does not exist, or is not unique. The backslash operator, A\b, issues a
warning if A is nearly singular or if it detects exact singularity.

If A is singular and Ax = b has a solution, you can find a particular solution that is not unique, by
typing

P = pinv(A)*b

pinv(A) is a pseudoinverse of A. If Ax = b does not have an exact solution, then pinv(A) returns a
least-squares solution.

For example:

A = [ 1     3     7
     -1     4     4
      1    10    18 ]

is singular, as you can verify by typing

rank(A)

ans =

     2

Since A is not full rank, it has some singular values equal to zero.
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Exact Solutions. For b =[5;2;12], the equation Ax = b has an exact solution, given by

pinv(A)*b

ans =
    0.3850
   -0.1103
    0.7066

Verify that pinv(A)*b is an exact solution by typing

A*pinv(A)*b

ans =
    5.0000
    2.0000
   12.0000

Least-Squares Solutions. However, if b = [3;6;0], Ax = b does not have an exact solution. In this
case, pinv(A)*b returns a least-squares solution. If you type

A*pinv(A)*b

ans =
   -1.0000
    4.0000
    2.0000

you do not get back the original vector b.

You can determine whether Ax =b has an exact solution by finding the row reduced echelon form of
the augmented matrix [A b]. To do so for this example, enter

rref([A b])
ans =
    1.0000         0    2.2857         0
         0    1.0000    1.5714         0
         0         0         0    1.0000

Since the bottom row contains all zeros except for the last entry, the equation does not have a
solution. In this case, pinv(A) returns a least-squares solution.

Overdetermined Systems

This example shows how overdetermined systems are often encountered in various kinds of curve
fitting to experimental data.

A quantity y is measured at several different values of time t to produce the following observations.
You can enter the data and view it in a table with the following statements.

t = [0 .3 .8 1.1 1.6 2.3]';
y = [.82 .72 .63 .60 .55 .50]';
B = table(t,y)

B=6×2 table
     t      y  
    ___    ____

 Linear Algebra

3-13



      0    0.82
    0.3    0.72
    0.8    0.63
    1.1     0.6
    1.6    0.55
    2.3     0.5

Try modeling the data with a decaying exponential function

y(t) = c1 + c2e−t.

The preceding equation says that the vector y should be approximated by a linear combination of two
other vectors. One is a constant vector containing all ones and the other is the vector with
components exp(-t). The unknown coefficients, c1 and c2, can be computed by doing a least-squares
fit, which minimizes the sum of the squares of the deviations of the data from the model. There are
six equations in two unknowns, represented by a 6-by-2 matrix.

E = [ones(size(t)) exp(-t)]

E = 6×2

    1.0000    1.0000
    1.0000    0.7408
    1.0000    0.4493
    1.0000    0.3329
    1.0000    0.2019
    1.0000    0.1003

Use the backslash operator to get the least-squares solution.

c = E\y

c = 2×1

    0.4760
    0.3413

In other words, the least-squares fit to the data is

y(t) = 0 . 4760 + 0 . 3413e−t .

The following statements evaluate the model at regularly spaced increments in t, and then plot the
result together with the original data:

T = (0:0.1:2.5)';
Y = [ones(size(T)) exp(-T)]*c;
plot(T,Y,'-',t,y,'o')
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E*c is not exactly equal to y, but the difference might well be less than measurement errors in the
original data.

A rectangular matrix A is rank deficient if it does not have linearly independent columns. If A is rank
deficient, then the least-squares solution to AX = B is not unique. A\B issues a warning if A is rank
deficient and produces a least-squares solution. You can use lsqminnorm to find the solution X that
has the minimum norm among all solutions.

Underdetermined Systems

This example shows how the solution to underdetermined systems is not unique. Underdetermined
linear systems involve more unknowns than equations. The matrix left division operation in MATLAB
finds a basic least-squares solution, which has at most m nonzero components for an m-by-n coefficient
matrix.

Here is a small, random example:

R = [6 8 7 3; 3 5 4 1]
rng(0);
b = randi(8,2,1)

R =

       6              8              7              3       
       3              5              4              1       
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b =

       7       
       8      

The linear system Rp = b involves two equations in four unknowns. Since the coefficient matrix
contains small integers, it is appropriate to use the format command to display the solution in
rational format. The particular solution is obtained with

format rat
p = R\b

p =

       0       
      17/7     
       0       
     -29/7    

One of the nonzero components is p(2) because R(:,2) is the column of R with largest norm. The
other nonzero component is p(4) because R(:,4) dominates after R(:,2) is eliminated.

The complete general solution to the underdetermined system can be characterized by adding p to an
arbitrary linear combination of the null space vectors, which can be found using the null function
with an option requesting a rational basis.

Z = null(R,'r')

Z =

      -1/2           -7/6     
      -1/2            1/2     
       1              0       
       0              1       

It can be confirmed that R*Z is zero and that the residual R*x - b is small for any vector x, where

x = p + Z*q

Since the columns of Z are the null space vectors, the product Z*q is a linear combination of those
vectors:

Zq = x 1 x 2
u
w

= ux 1 + wx 2 .

To illustrate, choose an arbitrary q and construct x.

q = [-2; 1];
x = p + Z*q;

Calculate the norm of the residual.

format short
norm(R*x - b)

ans =

   2.6645e-15
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When infinitely many solutions are available, the solution with minimum norm is of particular
interest. You can use lsqminnorm to compute the minimum-norm least-squares solution. This
solution has the smallest possible value for norm(p).

p = lsqminnorm(R,b)

p =

    -207/137   
     365/137   
      79/137   
    -424/137  

Solving for Several Right-Hand Sides

Some problems are concerned with solving linear systems that have the same coefficient matrix A,
but different right-hand sides b. When the different values of b are available at the same time, you
can construct b as a matrix with several columns and solve all of the systems of equations at the same
time using a single backslash command: X = A\[b1 b2 b3 …].

However, sometimes the different values of b are not all available at the same time, which means you
need to solve several systems of equations consecutively. When you solve one of these systems of
equations using slash (/) or backslash (\), the operator factorizes the coefficient matrix A and uses this
matrix decomposition to compute the solution. However, each subsequent time you solve a similar
system of equations with a different b, the operator computes the same decomposition of A, which is
a redundant computation.

The solution to this problem is to precompute the decomposition of A, and then reuse the factors to
solve for the different values of b. In practice, however, precomputing the decomposition in this
manner can be difficult since you need to know which decomposition to compute (LU, LDL, Cholesky,
and so on) as well as how to multiply the factors to solve the problem. For example, with LU
decomposition you need to solve two linear systems to solve the original system Ax = b:

[L,U] = lu(A);
x = U \ (L \ b);

Instead, the recommended method for solving linear systems with several consecutive right-hand
sides is to use decomposition objects. These objects enable you to leverage the performance
benefits of precomputing the matrix decomposition, but they do not require knowledge of how to use
the matrix factors. You can replace the previous LU decomposition with:

dA = decomposition(A,'lu');
x = dA\b;

If you are unsure which decomposition to use, decomposition(A) chooses the correct type based
on the properties of A, similar to what backslash does.

Here is a simple test of the possible performance benefits of this approach. The test solves the same
sparse linear system 100 times using both backslash (\) and decomposition.

n = 1e3;
A = sprand(n,n,0.2) + speye(n);
b = ones(n,1);

% Backslash solution
tic
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for k = 1:100
    x = A\b;
end
toc

Elapsed time is 9.006156 seconds.

% decomposition solution
tic
dA = decomposition(A);
for k = 1:100
    x = dA\b;
end
toc

Elapsed time is 0.374347 seconds.

For this problem, the decomposition solution is much faster than using backslash alone, yet the
syntax remains simple.

Iterative Methods

If the coefficient matrix A is large and sparse, factorization methods are generally not efficient.
Iterative methods generate a series of approximate solutions. MATLAB provides several iterative
methods to handle large, sparse input matrices.

Function Description
pcg Preconditioned conjugate gradients method. This method is appropriate

for Hermitian positive definite coefficient matrix A.
bicg BiConjugate Gradients Method
bicgstab BiConjugate Gradients Stabilized Method
bicgstabl BiCGStab(l) Method
cgs Conjugate Gradients Squared Method
gmres Generalized Minimum Residual Method
lsqr LSQR Method
minres Minimum Residual Method. This method is appropriate for Hermitian

coefficient matrix A.
qmr Quasi-Minimal Residual Method
symmlq Symmetric LQ Method
tfqmr Transpose-Free QMR Method

Multithreaded Computation

MATLAB supports multithreaded computation for a number of linear algebra and element-wise
numerical functions. These functions automatically execute on multiple threads. For a function or
expression to execute faster on multiple CPUs, a number of conditions must be true:

1 The function performs operations that easily partition into sections that execute concurrently.
These sections must be able to execute with little communication between processes. They
should require few sequential operations.
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2 The data size is large enough so that any advantages of concurrent execution outweigh the time
required to partition the data and manage separate execution threads. For example, most
functions speed up only when the array contains several thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by memory access time. As
a general rule, complicated functions speed up more than simple functions.

inv, lscov, linsolve, and mldivide show significant increase in speed on large double-precision
arrays (on order of 10,000 elements or more) when multithreading is enabled.

Factorizations
• “Introduction” on page 3-19
• “Cholesky Factorization” on page 3-19
• “LU Factorization” on page 3-20
• “QR Factorization” on page 3-21
• “Using Multithreaded Computation for Factorization” on page 3-24

Introduction

All three of the matrix factorizations discussed in this section make use of triangular matrices, where
all the elements either above or below the diagonal are zero. Systems of linear equations involving
triangular matrices are easily and quickly solved using either forward or back substitution.

Cholesky Factorization

The Cholesky factorization expresses a symmetric matrix as the product of a triangular matrix and its
transpose

A = R′R,

where R is an upper triangular matrix.

Not all symmetric matrices can be factored in this way; the matrices that have such a factorization
are said to be positive definite. This implies that all the diagonal elements of A are positive and that
the off-diagonal elements are “not too big.” The Pascal matrices provide an interesting example.
Throughout this chapter, the example matrix A has been the 3-by-3 Pascal matrix. Temporarily switch
to the 6-by-6:

A = pascal(6)

A =
       1     1     1     1     1     1
       1     2     3     4     5     6
       1     3     6    10    15    21
       1     4    10    20    35    56
       1     5    15    35    70   126
       1     6    21    56   126   252

The elements of A are binomial coefficients. Each element is the sum of its north and west neighbors.
The Cholesky factorization is

R = chol(A)
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R =
     1     1     1     1     1     1
     0     1     2     3     4     5
     0     0     1     3     6    10
     0     0     0     1     4    10
     0     0     0     0     1     5
     0     0     0     0     0     1

The elements are again binomial coefficients. The fact that R'*R is equal to A demonstrates an
identity involving sums of products of binomial coefficients.

Note The Cholesky factorization also applies to complex matrices. Any complex matrix that has a
Cholesky factorization satisfies

A′ = A

and is said to be Hermitian positive definite.

The Cholesky factorization allows the linear system

Ax = b

to be replaced by

R′Rx = b.

Because the backslash operator recognizes triangular systems, this can be solved in the MATLAB
environment quickly with

x = R\(R'\b)

If A is n-by-n, the computational complexity of chol(A) is O(n3), but the complexity of the subsequent
backslash solutions is only O(n2).

LU Factorization

LU factorization, or Gaussian elimination, expresses any square matrix A as the product of a
permutation of a lower triangular matrix and an upper triangular matrix

A = LU,

where L is a permutation of a lower triangular matrix with ones on its diagonal and U is an upper
triangular matrix.

The permutations are necessary for both theoretical and computational reasons. The matrix

0 1
1 0

cannot be expressed as the product of triangular matrices without interchanging its two rows.
Although the matrix

ε 1
1 0
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can be expressed as the product of triangular matrices, when ε is small, the elements in the factors
are large and magnify errors, so even though the permutations are not strictly necessary, they are
desirable. Partial pivoting ensures that the elements of L are bounded by one in magnitude and that
the elements of U are not much larger than those of A.

For example:

[L,U] = lu(B)

L =
    1.0000         0         0
    0.3750    0.5441    1.0000
    0.5000    1.0000         0

U =
    8.0000    1.0000    6.0000
         0    8.5000   -1.0000
         0         0    5.2941

The LU factorization of A allows the linear system

A*x = b

to be solved quickly with

x = U\(L\b)

Determinants and inverses are computed from the LU factorization using

det(A) = det(L)*det(U)

and

inv(A) = inv(U)*inv(L)

You can also compute the determinants using det(A) = prod(diag(U)), though the signs of the
determinants might be reversed.

QR Factorization

An orthogonal matrix, or a matrix with orthonormal columns, is a real matrix whose columns all have
unit length and are perpendicular to each other. If Q is orthogonal, then

QTQ = I,

where I is the identity matrix.

The simplest orthogonal matrices are two-dimensional coordinate rotations:

cos(θ) sin(θ)
−sin(θ) cos(θ)

.

For complex matrices, the corresponding term is unitary. Orthogonal and unitary matrices are
desirable for numerical computation because they preserve length, preserve angles, and do not
magnify errors.
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The orthogonal, or QR, factorization expresses any rectangular matrix as the product of an
orthogonal or unitary matrix and an upper triangular matrix. A column permutation might also be
involved:

A = QR

or

AP = QR,

where Q is orthogonal or unitary, R is upper triangular, and P is a permutation.

There are four variants of the QR factorization—full or economy size, and with or without column
permutation.

Overdetermined linear systems involve a rectangular matrix with more rows than columns, that is m-
by-n with m > n. The full-size QR factorization produces a square, m-by-m orthogonal Q and a
rectangular m-by-n upper triangular R:

C=gallery('uniformdata',[5 4], 0);
[Q,R] = qr(C)

Q =

    0.6191    0.1406   -0.1899   -0.5058    0.5522
    0.1506    0.4084    0.5034    0.5974    0.4475
    0.3954   -0.5564    0.6869   -0.1478   -0.2008
    0.3167    0.6676    0.1351   -0.1729   -0.6370
    0.5808   -0.2410   -0.4695    0.5792   -0.2207

R =

    1.5346    1.0663    1.2010    1.4036
         0    0.7245    0.3474   -0.0126
         0         0    0.9320    0.6596
         0         0         0    0.6648
         0         0         0         0

In many cases, the last m – n columns of Q are not needed because they are multiplied by the zeros in
the bottom portion of R. So the economy-size QR factorization produces a rectangular, m-by-n Q with
orthonormal columns and a square n-by-n upper triangular R. For the 5-by-4 example, this is not
much of a saving, but for larger, highly rectangular matrices, the savings in both time and memory
can be quite important:

[Q,R] = qr(C,0)    
Q =

    0.6191    0.1406   -0.1899   -0.5058
    0.1506    0.4084    0.5034    0.5974
    0.3954   -0.5564    0.6869   -0.1478
    0.3167    0.6676    0.1351   -0.1729
    0.5808   -0.2410   -0.4695    0.5792

R =
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    1.5346    1.0663    1.2010    1.4036
         0    0.7245    0.3474   -0.0126
         0         0    0.9320    0.6596
         0         0         0    0.6648

In contrast to the LU factorization, the QR factorization does not require any pivoting or
permutations. But an optional column permutation, triggered by the presence of a third output
argument, is useful for detecting singularity or rank deficiency. At each step of the factorization, the
column of the remaining unfactored matrix with largest norm is used as the basis for that step. This
ensures that the diagonal elements of R occur in decreasing order and that any linear dependence
among the columns is almost certainly be revealed by examining these elements. For the small
example given here, the second column of C has a larger norm than the first, so the two columns are
exchanged:

[Q,R,P] = qr(C)

Q =
   -0.3522    0.8398   -0.4131
   -0.7044   -0.5285   -0.4739
   -0.6163    0.1241    0.7777

R =
  -11.3578   -8.2762
         0    7.2460
         0         0

P =
     0     1
     1     0

When the economy-size and column permutations are combined, the third output argument is a
permutation vector, rather than a permutation matrix:

[Q,R,p] = qr(C,0)

Q =
   -0.3522    0.8398
   -0.7044   -0.5285
   -0.6163    0.1241

R =
  -11.3578   -8.2762
         0    7.2460

p =
     2     1

The QR factorization transforms an overdetermined linear system into an equivalent triangular
system. The expression

norm(A*x - b)

equals

norm(Q*R*x - b)
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Multiplication by orthogonal matrices preserves the Euclidean norm, so this expression is also equal
to

norm(R*x - y)

where y = Q'*b. Since the last m-n rows of R are zero, this expression breaks into two pieces:

norm(R(1:n,1:n)*x - y(1:n))

and

norm(y(n+1:m))

When A has full rank, it is possible to solve for x so that the first of these expressions is zero. Then
the second expression gives the norm of the residual. When A does not have full rank, the triangular
structure of R makes it possible to find a basic solution to the least-squares problem.

Using Multithreaded Computation for Factorization

MATLAB software supports multithreaded computation for a number of linear algebra and element-
wise numerical functions. These functions automatically execute on multiple threads. For a function
or expression to execute faster on multiple CPUs, a number of conditions must be true:

1 The function performs operations that easily partition into sections that execute concurrently.
These sections must be able to execute with little communication between processes. They
should require few sequential operations.

2 The data size is large enough so that any advantages of concurrent execution outweigh the time
required to partition the data and manage separate execution threads. For example, most
functions speed up only when the array contains several thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by memory access time. As
a general rule, complicated functions speed up more than simple functions.

lu and qr show significant increase in speed on large double-precision arrays (on order of 10,000
elements).

Powers and Exponentials

This topic shows how to compute matrix powers and exponentials using a variety of methods.

Positive Integer Powers

If A is a square matrix and p is a positive integer, then A^p effectively multiplies A by itself p-1 times.
For example:

A = [1 1 1
     1 2 3
     1 3 6];
A^2

ans = 3×3

     3     6    10
     6    14    25
    10    25    46

3 Mathematics

3-24



Inverse and Fractional Powers

If A is square and nonsingular, then A^(-p) effectively multiplies inv(A) by itself p-1 times.

A^(-3)

ans = 3×3

  145.0000 -207.0000   81.0000
 -207.0000  298.0000 -117.0000
   81.0000 -117.0000   46.0000

MATLAB® calculates inv(A) and A^(-1) with the same algorithm, so the results are exactly the
same. Both inv(A) and A^(-1) produce warnings if the matrix is close to being singular.

isequal(inv(A),A^(-1))

ans = logical
   1

Fractional powers, such as A^(2/3), are also permitted. The results using fractional powers depend
on the distribution of the eigenvalues of the matrix.

A^(2/3)

ans = 3×3

    0.8901    0.5882    0.3684
    0.5882    1.2035    1.3799
    0.3684    1.3799    3.1167

Element-by-Element Powers

The .^ operator calculates element-by-element powers. For example, to square each element in a
matrix you can use A.^2.

A.^2

ans = 3×3

     1     1     1
     1     4     9
     1     9    36

Square Roots

The sqrt function is a convenient way to calculate the square root of each element in a matrix. An
alternate way to do this is A.^(1/2).

sqrt(A)

ans = 3×3

    1.0000    1.0000    1.0000
    1.0000    1.4142    1.7321
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    1.0000    1.7321    2.4495

For other roots, you can use nthroot. For example, calculate A.^(1/3).

nthroot(A,3)

ans = 3×3

    1.0000    1.0000    1.0000
    1.0000    1.2599    1.4422
    1.0000    1.4422    1.8171

These element-wise roots differ from the matrix square root, which calculates a second matrix B such
that A = BB. The function sqrtm(A) computes A^(1/2) by a more accurate algorithm. The m in
sqrtm distinguishes this function from sqrt(A), which, like A.^(1/2), does its job element-by-
element.

B = sqrtm(A)

B = 3×3

    0.8775    0.4387    0.1937
    0.4387    1.0099    0.8874
    0.1937    0.8874    2.2749

B^2

ans = 3×3

    1.0000    1.0000    1.0000
    1.0000    2.0000    3.0000
    1.0000    3.0000    6.0000

Scalar Bases

In addition to raising a matrix to a power, you also can raise a scalar to the power of a matrix.

2^A

ans = 3×3

   10.4630   21.6602   38.5862
   21.6602   53.2807   94.6010
   38.5862   94.6010  173.7734

When you raise a scalar to the power of a matrix, MATLAB uses the eigenvalues and eigenvectors of
the matrix to calculate the matrix power. If [V,D] = eig(A), then 2A = V 2D V−1.

[V,D] = eig(A);
V*2^D*V^(-1)

ans = 3×3

   10.4630   21.6602   38.5862
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   21.6602   53.2807   94.6010
   38.5862   94.6010  173.7734

Matrix Exponentials

The matrix exponential is a special case of raising a scalar to a matrix power. The base for a matrix
exponential is Euler's number e = exp(1).

e = exp(1);
e^A

ans = 3×3
103 ×

    0.1008    0.2407    0.4368
    0.2407    0.5867    1.0654
    0.4368    1.0654    1.9418

The expm function is a more convenient way to calculate matrix exponentials.

expm(A)

ans = 3×3
103 ×

    0.1008    0.2407    0.4368
    0.2407    0.5867    1.0654
    0.4368    1.0654    1.9418

The matrix exponential can be calculated in a number of ways. See “Matrix Exponentials” for more
information.

Dealing with Small Numbers

The MATLAB functions log1p and expm1 calculate log 1 + x  and ex− 1 accurately for very small
values of x. For example, if you try to add a number smaller than machine precision to 1, then the
result gets rounded to 1.

log(1+eps/2)

ans = 0

However, log1p is able to return a more accurate answer.

log1p(eps/2)

ans = 1.1102e-16

Likewise for ex− 1, if x is very small then it is rounded to zero.

exp(eps/2)-1

ans = 0

Again, expm1 is able to return a more accurate answer.
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expm1(eps/2)

ans = 1.1102e-16

Eigenvalues
• “Eigenvalue Decomposition” on page 3-28
• “Multiple Eigenvalues” on page 3-29
• “Schur Decomposition” on page 3-29

Eigenvalue Decomposition

An eigenvalue and eigenvector of a square matrix A are, respectively, a scalar λ and a nonzero vector
υ that satisfy

Aυ = λυ.

With the eigenvalues on the diagonal of a diagonal matrix Λ and the corresponding eigenvectors
forming the columns of a matrix V, you have

AV = VΛ.

If V is nonsingular, this becomes the eigenvalue decomposition

A = VΛV–1.

A good example is the coefficient matrix of the differential equation dx/dt = Ax:

A =
     0    -6    -1
     6     2   -16
    -5    20   -10

The solution to this equation is expressed in terms of the matrix exponential x(t) = etAx(0). The
statement

lambda = eig(A)

produces a column vector containing the eigenvalues of A. For this matrix, the eigenvalues are
complex:

lambda =
     -3.0710         
     -2.4645+17.6008i
     -2.4645-17.6008i

The real part of each of the eigenvalues is negative, so eλt approaches zero as t increases. The
nonzero imaginary part of two of the eigenvalues, ±ω, contributes the oscillatory component, sin(ωt),
to the solution of the differential equation.

With two output arguments, eig computes the eigenvectors and stores the eigenvalues in a diagonal
matrix:

[V,D] = eig(A)

V =
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  -0.8326         0.2003 - 0.1394i   0.2003 + 0.1394i
  -0.3553        -0.2110 - 0.6447i  -0.2110 + 0.6447i
  -0.4248        -0.6930            -0.6930          

D =
  -3.0710                 0                 0         
        0           -2.4645+17.6008i        0         
        0                 0           -2.4645-17.6008i

The first eigenvector is real and the other two vectors are complex conjugates of each other. All three
vectors are normalized to have Euclidean length, norm(v,2), equal to one.

The matrix V*D*inv(V), which can be written more succinctly as V*D/V, is within round-off error of
A. And, inv(V)*A*V, or V\A*V, is within round-off error of D.

Multiple Eigenvalues

Some matrices do not have an eigenvector decomposition. These matrices are not diagonalizable. For
example:

A = [ 1    -2    1 
      0     1    4 
      0     0    3 ]

For this matrix

[V,D] = eig(A)

produces

V =

    1.0000    1.0000   -0.5571
         0    0.0000    0.7428
         0         0    0.3714

D =

     1     0     0
     0     1     0
     0     0     3

There is a double eigenvalue at λ = 1. The first and second columns of V are the same. For this
matrix, a full set of linearly independent eigenvectors does not exist.

Schur Decomposition

Many advanced matrix computations do not require eigenvalue decompositions. They are based,
instead, on the Schur decomposition

A = USU ′ ,

where U is an orthogonal matrix and S is a block upper-triangular matrix with 1-by-1 and 2-by-2
blocks on the diagonal. The eigenvalues are revealed by the diagonal elements and blocks of S, while
the columns of U provide an orthogonal basis, which has much better numerical properties than a set
of eigenvectors.
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For example, compare the eigenvalue and Schur decompositions of this defective matrix:

A = [ 6    12    19 
     -9   -20   -33 
      4     9    15 ];

[V,D] = eig(A)

V =

  -0.4741 + 0.0000i  -0.4082 - 0.0000i  -0.4082 + 0.0000i
   0.8127 + 0.0000i   0.8165 + 0.0000i   0.8165 + 0.0000i
  -0.3386 + 0.0000i  -0.4082 + 0.0000i  -0.4082 - 0.0000i

D =

  -1.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   1.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   1.0000 - 0.0000i

[U,S] = schur(A)

U =

   -0.4741    0.6648    0.5774
    0.8127    0.0782    0.5774
   -0.3386   -0.7430    0.5774

S =

   -1.0000   20.7846  -44.6948
         0    1.0000   -0.6096
         0    0.0000    1.0000

The matrix A is defective since it does not have a full set of linearly independent eigenvectors (the
second and third columns of V are the same). Since not all columns of V are linearly independent, it
has a large condition number of about ~1e8. However, schur is able to calculate three different
basis vectors in U. Since U is orthogonal, cond(U) = 1.

The matrix S has the real eigenvalue as the first entry on the diagonal and the repeated eigenvalue
represented by the lower right 2-by-2 block. The eigenvalues of the 2-by-2 block are also eigenvalues
of A:

eig(S(2:3,2:3))

ans =

   1.0000 + 0.0000i
   1.0000 - 0.0000i

Singular Values
A singular value and corresponding singular vectors of a rectangular matrix A are, respectively, a
scalar σ and a pair of vectors u and v that satisfy
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Av = σu

AHu = σv,

where AH is the Hermitian transpose of A. The singular vectors u and v are typically scaled to have a
norm of 1. Also, if u and v are singular vectors of A, then -u and -v are singular vectors of A as well.

The singular values σ are always real and nonnegative, even if A is complex. With the singular values
in a diagonal matrix Σ and the corresponding singular vectors forming the columns of two orthogonal
matrices U and V, you obtain the equations

AV = UΣ

AHU = VΣ .

Since U and V are unitary matrices, multiplying the first equation by VH on the right yields the
singular value decomposition equation

A = UΣVH .

The full singular value decomposition of an m-by-n matrix involves:

• m-by-m matrix U
• m-by-n matrix Σ
• n-by-n matrix V

In other words, U and V are both square, and Σ is the same size as A. If A has many more rows than
columns (m > n), then the resulting m-by-m matrix U is large. However, most of the columns in U are
multiplied by zeros in Σ. In this situation, the economy-sized decomposition saves both time and
storage by producing an m-by-n U, an n-by-n Σ and the same V:

The eigenvalue decomposition is the appropriate tool for analyzing a matrix when it represents a
mapping from a vector space into itself, as it does for an ordinary differential equation. However, the
singular value decomposition is the appropriate tool for analyzing a mapping from one vector space
into another vector space, possibly with a different dimension. Most systems of simultaneous linear
equations fall into this second category.

If A is square, symmetric, and positive definite, then its eigenvalue and singular value decompositions
are the same. But, as A departs from symmetry and positive definiteness, the difference between the
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two decompositions increases. In particular, the singular value decomposition of a real matrix is
always real, but the eigenvalue decomposition of a real, nonsymmetric matrix might be complex.

For the example matrix

A = [9     4
     6     8
     2     7];

the full singular value decomposition is

[U,S,V] = svd(A)

U =

   -0.6105    0.7174    0.3355
   -0.6646   -0.2336   -0.7098
   -0.4308   -0.6563    0.6194

S =

   14.9359         0
         0    5.1883
         0         0

V =

   -0.6925    0.7214
   -0.7214   -0.6925

You can verify that U*S*V' is equal to A to within round-off error. For this small problem, the
economy size decomposition is only slightly smaller.

[U,S,V] = svd(A,"econ")

U =

   -0.6105    0.7174
   -0.6646   -0.2336
   -0.4308   -0.6563

S =

   14.9359         0
         0    5.1883

V =

   -0.6925    0.7214
   -0.7214   -0.6925

Again, U*S*V' is equal to A to within round-off error.
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Batched SVD Calculation

If you need to decompose a large collection of matrices that have the same size, it is inefficient to
perform all of the decompositions in a loop with svd. Instead, you can concatenate all of the matrices
into a multidimensional array and use pagesvd to perform singular value decompositions on all of
the array pages with a single function call.

Function Usage
pagesvd Use pagesvd to perform singular value

decompositions on the pages of a
multidimensional array. This is an efficient way to
perform SVD on a large collection of matrices
that all have the same size.

For example, consider a collection of three 2-by-2 matrices. Concatenate the matrices into a 2-by-2-
by-3 array with the cat function.

A = [0 -1; 1 0];
B = [-1 0; 0 -1];
C = [0 1; -1 0];
X = cat(3,A,B,C);

Now, use pagesvd to simultaneously perform the three decompositions.

[U,S,V] = pagesvd(X);

For each page of X, there are corresponding pages in the outputs U, S, and V. For example, the matrix
A is on the first page of X, and its decomposition is given by U(:,:,1)*S(:,:,1)*V(:,:,1)'.

Low-Rank SVD Approximations

For large sparse matrices, using svd to calculate all of the singular values and singular vectors is not
always practical. For example, if you need to know just a few of the largest singular values, then
calculating all of the singular values of a 5000-by-5000 sparse matrix is extra work.

In cases where only a subset of the singular values and singular vectors are required, the svds and
svdsketch functions are preferred over svd.

Function Usage
svds Use svds to calculate a rank-k approximation of

the SVD. You can specify whether the subset of
singular values should be the largest, the
smallest, or the closest to a specific number.
svds generally calculates the best possible rank-
k approximation.
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Function Usage
svdsketch Use svdsketch to calculate a partial SVD of the

input matrix satisfying a specified tolerance.
While svds requires that you specify the rank,
svdsketch adaptively determines the rank of the
matrix sketch based on the specified tolerance.
The rank-k approximation that svdsketch
ultimately uses satisfies the tolerance, but unlike
svds, it is not guaranteed to be the best one
possible.

For example, consider a 1000-by-1000 random sparse matrix with a density of about 30%.

n = 1000;
A = sprand(n,n,0.3);

The six largest singular values are

S = svds(A)

S =

  130.2184
   16.4358
   16.4119
   16.3688
   16.3242
   16.2838

Also, the six smallest singular values are

S = svds(A,6,"smallest")

S =

    0.0740
    0.0574
    0.0388
    0.0282
    0.0131
    0.0066

For smaller matrices that can fit in memory as a full matrix, full(A), using svd(full(A)) might
still be quicker than svds or svdsketch. However, for truly large and sparse matrices, using svds
or svdsketch becomes necessary.
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Operations on Nonlinear Functions
In this section...
“Function Handles” on page 3-35
“Function Functions” on page 3-35

Function Handles
You can create a handle to any MATLAB function, and then use that handle as a means of referencing
the function. A function handle is typically passed in an argument list to other functions, which can
then execute, or evaluate, the function using the handle.

Construct a function handle in MATLAB using the at sign, @, before the function name. The following
example creates a function handle for the sin function and assigns it to the variable fhandle:

fhandle = @sin;

You can call a function by means of its handle in the same way that you would call the function using
its name. The syntax is

fhandle(arg1, arg2, ...);

The function plot_fhandle, shown below, receives a function handle and data, generates y-axis
data using the function handle, and plots it:

function plot_fhandle(fhandle, data)
plot(data, fhandle(data))

When you call plot_fhandle with a handle to the sin function and the argument shown below, the
resulting evaluation produces a sine wave plot:

plot_fhandle(@sin, -pi:0.01:pi)

Function Functions
A class of functions called “function functions” works with nonlinear functions of a scalar variable.
That is, one function works on another function. The function functions include

• Zero finding
• Optimization
• Quadrature
• Ordinary differential equations

MATLAB represents the nonlinear function by the file that defines it. For example, here is a simplified
version of the function humps from the matlab/demos folder:

function y = humps(x)
y = 1./((x-.3).^2 + .01) + 1./((x-.9).^2 + .04) - 6;

Evaluate this function at a set of points in the interval 0 ≤ x ≤ 1 with

x = 0:.002:1;
y = humps(x);
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Then plot the function with

plot(x,y)

The graph shows that the function has a local minimum near x = 0.6. The function fminsearch finds
the minimizer, the value of x where the function takes on this minimum. The first argument to
fminsearch is a function handle to the function being minimized and the second argument is a
rough guess at the location of the minimum:

p = fminsearch(@humps,.5)
p =
    0.6370

To evaluate the function at the minimizer,

humps(p)

ans =
   11.2528

Numerical analysts use the terms quadrature and integration to distinguish between numerical
approximation of definite integrals and numerical integration of ordinary differential equations.
MATLAB quadrature routines are quad and quadl. The statement

Q = quadl(@humps,0,1)

computes the area under the curve in the graph and produces

3 Mathematics

3-36



Q =
   29.8583

Finally, the graph shows that the function is never zero on this interval. So, if you search for a zero
with

z = fzero(@humps,.5)

you will find one outside the interval:

z =
   -0.1316
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Multivariate Data
MATLAB uses column-oriented analysis for multivariate statistical data. Each column in a data set
represents a variable and each row an observation. The (i,j)th element is the ith observation of
the jth variable.

As an example, consider a data set with three variables:

• Heart rate
• Weight
• Hours of exercise per week

For five observations, the resulting array might look like

D = [ 72          134          3.2
      81          201          3.5
      69          156          7.1
      82          148          2.4
      75          170          1.2 ]

The first row contains the heart rate, weight, and exercise hours for patient 1, the second row
contains the data for patient 2, and so on. Now you can apply many MATLAB data analysis functions
to this data set. For example, to obtain the mean and standard deviation of each column, use

mu = mean(D), sigma = std(D)

mu =
      75.8       161.8         3.48

sigma =
    5.6303      25.499       2.2107

For a list of the data analysis functions available in MATLAB, type

help datafun

If you have access to the Statistics and Machine Learning Toolbox™ software, type

help stats
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Graphics

• “Basic Plotting Functions” on page 4-2
• “Creating Mesh and Surface Plots” on page 4-15
• “Display Images” on page 4-20
• “Printing Graphics” on page 4-23
• “Working with Graphics Objects” on page 4-25

4



Basic Plotting Functions
In this section...
“Creating a Plot” on page 4-2
“Plotting Multiple Data Sets in One Graph” on page 4-4
“Specifying Line Styles and Colors” on page 4-6
“Plotting Lines and Markers” on page 4-7
“Graphing Imaginary and Complex Data” on page 4-8
“Adding Plots to an Existing Graph” on page 4-9
“Figure Windows” on page 4-10
“Displaying Multiple Plots in One Figure” on page 4-11
“Controlling the Axes” on page 4-11
“Adding Axis Labels and Titles” on page 4-13
“Saving Figures” on page 4-13
“Saving Workspace Data” on page 4-14

Creating a Plot

The plot function has different forms, depending on the input arguments.

• If y is a vector, plot(y) produces a piecewise linear graph of the elements of y versus the index
of the elements of y.

• If you specify two vectors as arguments, plot(x,y) produces a graph of y versus x.

Use the colon operator to create a vector of x values ranging from 0 to 2π, compute the sine of these
values, and plot the result.

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)
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Add axis labels and a title. The characters \pi in the xlabel function create the symbol π. The
FontSize property in the title function increases the size the text used for the title.

xlabel('x = 0:2\pi')
ylabel('Sine of x')
title('Plot of the Sine Function','FontSize',12)
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Plotting Multiple Data Sets in One Graph

Multiple x-y pair arguments create multiple graphs with a single call to plot. MATLAB® uses a
different color for each line.

For example, these statements plot three related functions of x :

x = 0:pi/100:2*pi;
y = sin(x);
y2 = sin(x-.25);
y3 = sin(x-.5);
plot(x,y,x,y2,x,y3)
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The legend function provides an easy way to identify the individual lines:

legend('sin(x)','sin(x-.25)','sin(x-.5)')
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Specifying Line Styles and Colors
It is possible to specify color, line styles, and markers (such as plus signs or circles) when you plot
your data using the plot command:

plot(x,y,'color_style_marker')

color_style_marker contains one to four characters (enclosed in single quotes) constructed from
a color, a line style, and a marker type. For example,

plot(x,y,'r:+')

plots the data using a red-dotted line and places a + marker at each data point.

color_style_marker is composed of combinations of the following elements.
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Type Values Meanings
Color 'c'

'm'
'y'
'r'
'g'
'b'
'w'
'k'

cyan
magenta
yellow
red
green
blue
white
black

Line style '-'
'--'
':'
'-.'
no character

solid
dashed
dotted
dash-dot
no line

Marker type '+'
'o'
'*'
'x'
's'
'd'
'^'
'v'
'>'
'<'
'p'
'h'
no character

plus mark
unfilled circle
asterisk
letter x
unfilled square
unfilled diamond
unfilled upward triangle
unfilled downward triangle
unfilled right-pointing triangle
unfilled left-pointing triangle
unfilled pentagram
unfilled hexagram
no marker

Plotting Lines and Markers
If you specify a marker type, but not a line style, MATLAB creates the graph using only markers, but
no line. For example,

plot(x,y,'ks')

plots black squares at each data point, but does not connect the markers with a line.

The statement

plot(x,y,'r:+')

plots a red-dotted line and places plus sign markers at each data point.

Placing Markers at Every Tenth Data Point

This example shows how to use fewer data points to plot the markers than you use to plot the lines.
This example plots the data twice using a different number of points for the dotted line and marker
plots.

x1 = 0:pi/100:2*pi;
x2 = 0:pi/10:2*pi;
plot(x1,sin(x1),'r:',x2,sin(x2),'r+')
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Graphing Imaginary and Complex Data
When you pass complex values as arguments to plot, MATLAB ignores the imaginary part, except
when you pass a single complex argument. For this special case, the command is a shortcut for a
graph of the imaginary part versus the real part. Therefore,

plot(Z)

where Z is a complex vector or matrix, is equivalent to

plot(real(Z),imag(Z))

The following statements draw a 20-sided polygon with little circles at the vertices.

t = 0:pi/10:2*pi;
plot(exp(1i*t),'-o')
axis equal
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The axis equal command makes the individual tick-mark increments on the x- and y-axes the same
length, which makes this plot more circular in appearance.

Adding Plots to an Existing Graph
The hold command enables you to add plots to an existing graph. When you type,

hold on

MATLAB does not replace the existing graph when you issue another plotting command. Instead,
MATLAB combines the new graph with the current graph.

For example, these statements first create a surface plot of the peaks function, then superimpose a
contour plot of the same function.

[x,y,z] = peaks;
% Create surface plot
surf(x,y,z)
% Remove edge lines a smooth colors
shading interp
% Hold the current graph 
hold on
% Add the contour graph to the pcolor graph
contour3(x,y,z,20,'k')
% Return to default
hold off
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Figure Windows
Plotting functions automatically open a new figure window if there are no figure windows already
created. If there are multiple figure windows open, MATLAB uses the one that is designated as the
“current figure” (usually, the last figure used).

To make an existing figure window the current figure, you can click the mouse while the pointer is in
that window or you can type,

figure(n)

where n is the number in the figure title bar.

To open a new figure window and make it the current figure, type

figure

Clearing the Figure for a New Plot

When a figure already exists, most plotting commands clear the axes and use this figure to create the
new plot. However, these commands do not reset figure properties, such as the background color or
the colormap. If you have set any figure properties in the previous plot, you can use the clf
command with the reset option,

clf reset

before creating your new plot to restore the figure's properties to their defaults.
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Displaying Multiple Plots in One Figure
The subplot command enables you to display multiple plots in the same window or print them on
the same piece of paper. Typing

subplot(m,n,p)

partitions the figure window into an m-by-n matrix of small subplots and selects the pth subplot for
the current plot. The plots are numbered along the first row of the figure window, then the second
row, and so on. For example, these statements plot data in three subregions of the figure window.

x = 0:pi/20:2*pi;
subplot(3,1,1); plot(sin(x))
subplot(3,1,2); plot(cos(x))
subplot(3,1,3); plot(sin(x).*cos(x))

Controlling the Axes
The axis command provides a number of options for setting the scaling, orientation, and aspect ratio
of graphs.

Automatic Axis Limits and Tick Marks

By default, MATLAB finds the maxima and minima of the data and chooses the axis limits to span this
range. MATLAB selects the limits and axis tick mark values to produce a graph that clearly displays
the data. However, you can set your own limits using the axis or xlim, ylim, and zlim functions.
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Note Changing the limits of one axis can cause other limits to change to better represent the data.
To disable automatic limit setting, enter the axis manual command.

Setting Axis Limits

The axis command enables you to specify your own limits:

axis([xmin xmax ymin ymax])

or for three-dimensional graphs,

axis([xmin xmax ymin ymax zmin zmax])

Use the command

axis auto

to enable automatic limit selection again.

Setting the Axis Aspect Ratio

The axis command also enables you to specify a number of predefined modes. For example,

axis square

makes the x-axis and y-axis the same length.

axis equal

makes the individual tick mark increments on the x-axes and y-axes the same length. This means

plot(exp(1i*(0:pi/10:2*pi)))

followed by either axis square or axis equal turns the oval into a proper circle:

axis auto normal

returns the axis scaling to its default automatic mode.

Setting Axis Visibility

You can use the axis command to make the axis visible or invisible.

axis on

makes the axes visible. This is the default.

axis off

makes the axes invisible.

Setting Grid Lines

The grid command toggles grid lines on and off. The statement

grid on

turns the grid lines on, and
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grid off

turns them back off again.

Adding Axis Labels and Titles
This example show how to create a graph and enhance its presentation:

• Define the x- and y-axis limits (axis)
• Label the x- and y-axes (xlabel, ylabel)
• Add a title (title)
• Add a text note on the graph (text)

Produce mathematical symbols using LaTeX notation.

For information on placing arrows, boxes, and circles in your graph, see the annotation function.

Saving Figures
Save a figure by selecting Save from the File menu. This writes the figure to a file, including property
data, its menus, uicontrols, and all annotations (i.e., the entire window). If you have not saved the
figure before, the Save As dialog displays. This dialog box provides options to save the figure as
a .fig file or export it to a graphics format.

If you have previously saved the figure, using Save again saves the figure “silently,” without
displaying the Save As dialog.

To save a figure using a standard graphics format for use with other applications, such as TIFF or
JPG, select Save As (or Export Setup, if you want additional control) from the File menu.

Note Whenever you specify a format for saving a figure, that file format is used again the next time
you save that figure or a new one. If you do not want to save in the previously used format, use Save
As and be sure to set the Save as type drop-down menu to the kind of file you want to write.

You can also save from the command line:

• Use the savefig function to save a figure and the graphics objects it contains as a .fig file.
• Use the saveas command, including any options to save the figure in a variety of formats.

Loading a Figure

You can load figures into MATLAB using these functions:

• Use the openfig function to load figures saved as .fig files.
• Use the imread function to read standard graphics files (including save figures) into MATLAB.

Generating MATLAB Code to Recreate a Figure

You can generate MATLAB code that recreates a figure and the graph it contains by selecting
Generate code from the figure File menu. This option is particularly useful if you have developed a
graph using plotting tools and want to create a similar graph using the same or different data.
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Saving Workspace Data
You can save the variables in your workspace by selecting Save Workspace As from the figure File
menu. You can reload saved data using the Import Data item in the figure File menu. MATLAB
supports a variety of data file formats, including MATLAB data files, which have a .mat extension.
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Creating Mesh and Surface Plots
In this section...
“About Mesh and Surface Plots” on page 4-15
“Visualizing Functions of Two Variables” on page 4-15

About Mesh and Surface Plots
MATLAB defines a surface by the z-coordinates of points above a grid in the x-y plane, using straight
lines to connect adjacent points. The mesh and surf functions display surfaces in three dimensions.

• mesh produces wireframe surfaces that color only the lines connecting the defining points.
• surf displays both the connecting lines and the faces of the surface in color.

MATLAB colors surfaces by mapping z-data values to indexes into the figure colormap.

Visualizing Functions of Two Variables
To display a function of two variables, z = f (x,y),

1 Generate X and Y matrices consisting of repeated rows and columns, respectively, over the
domain of the function.

2 Use X and Y to evaluate and graph the function.

The meshgrid function transforms the domain specified by a single vector or two vectors x and y
into matrices X and Y for use in evaluating functions of two variables. The rows of X are copies of the
vector x and the columns of Y are copies of the vector y.

Graphing the sinc Function

This example shows how to evaluate and graph the two-dimensional sinc function, sin(R)/R, between
the x and y directions. R is the distance from the origin, which is at the center of the matrix. Adding
eps (a very small value) prevents a hole in the mesh at the point where R = 0.

[X,Y] = meshgrid(-8:.5:8); 
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
mesh(X,Y,Z)

 Creating Mesh and Surface Plots

4-15



By default, MATLAB® uses the current colormap to color the mesh.

Colored Surface Plots

This example shows how to graph the sinc function as a surface plot, specify a colormap, and add a
color bar to show the mapping of data to color.

A surface plot is similar to a mesh plot except that the rectangular faces of the surface are colored.
The color of each face is determined by the values of Z and the colormap (a colormap is an ordered
list of colors).

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
surf(X,Y,Z)
colormap hsv
colorbar
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Making Surfaces Transparent

This example shows how you can make the faces of a surface transparent to a varying degree.
Transparency (referred to as the alpha value) can be specified for the whole object or can be based
on an alphamap, which behaves similarly to colormaps.

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
surf(X,Y,Z)
colormap hsv
alpha(.4)

 Creating Mesh and Surface Plots

4-17



MATLAB® displays a surface with a face alpha value of 0.4. Alpha values range from 0 (completely
transparent) to 1 (not transparent).

Illuminating Surface Plots with Lights

This example shows the same surface as the previous examples, but colors it red and removes the
mesh lines. A light object is then added to the left of the "camera" (the camera is the location in space
from where you are viewing the surface).

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
surf(X,Y,Z,'FaceColor','red','EdgeColor','none')
camlight left; 
lighting phong
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Lighting is the technique of illuminating an object with a directional light source. In certain cases,
this technique can make subtle differences in surface shape easier to see. Lighting can also be used
to add realism to three-dimensional graphs.

Manipulating the Surface

The figure toolbar and the camera toolbar provide ways to explore three-dimensional graphics
interactively. Display the camera toolbar by selecting Camera Toolbar from the figure View menu.

The following picture shows both toolbars with the Rotate 3D tool selected.

These tools enable you to move the camera around the surface object, zoom, add lighting, and
perform other viewing operations without issuing commands.
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Display Images
In this section...
“Image Data” on page 4-20
“Reading and Writing Images” on page 4-21

Image Data
You can display a 2-D numeric array as an image. In images, the array elements determine brightness
or color of the images. For example, load an image array and its colormap:

load durer
whos
Name          Size         Bytes  Class

  X           648x509      2638656  double array
  caption     2x28             112  char array
  map         128x3           3072  double array

loads the file durer.mat, adding three variables to the workspace. The array X is a 648-by-509
matrix and map is a 128-by-3 array that is the colormap for this image.

MAT-files, such as durer.mat, are binary files that provide a way to save MATLAB variables.

The elements of X are integers between 1 and 128, which serve as indices into the colormap, map. To
display the image, use the imshow function:

imshow(X,map)

reproduces Albrecht Dürer's etching.
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Reading and Writing Images
You can read standard image files (TIFF, JPEG, PNG, and so on, using the imread function. The type
of data returned by imread depends on the type of image you are reading.
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You can write MATLAB data to a variety of standard image formats using the imwrite function.
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Printing Graphics
In this section...
“Overview of Printing” on page 4-23
“Printing from the File Menu” on page 4-23
“Exporting the Figure to a Graphics File” on page 4-23
“Using the Print Command” on page 4-23

Overview of Printing
You can print a MATLAB figure directly on a printer connected to your computer or you can export
the figure to one of the standard graphics file formats that MATLAB supports. There are two ways to
print and export figures:

• Use the Print, Print Preview, or Export Setup GUI options under the File menu.
• Use the print command to print or export the figure from the command line.

The print command provides greater control over drivers and file formats. The Print Preview dialog
box gives you greater control over figure size, proportions, placement, and page headers.

Printing from the File Menu
There are two menu options under the File menu that pertain to printing:

• The Print Preview option displays a dialog box that lets you lay out and style figures for printing
while previewing the output page, and from which you can print the figure. It includes options
that formerly were part of the Page Setup dialog box.

• The Print option displays a dialog box that lets you choose a printer, select standard printing
options, and print the figure.

Use Print Preview to determine whether the printed output is what you want. Click the Print
Preview dialog box Help button to display information on how to set up the page.

Exporting the Figure to a Graphics File
The Export Setup option in the File menu opens a GUI that enables you to set graphic
characteristics, such as text size, font, and style, for figures you save as graphics files. The Export
Setup dialog lets you define and apply templates to customize and standardize output. After setup,
you can export the figure to a number of standard graphics file formats, such as EPS, PNG, and TIFF.

Using the Print Command
The print command provides more flexibility in the type of output sent to the printer and allows you
to control printing from function and script files. The result can be sent directly to your default
printer or stored in a specified output file. A wide variety of output formats is available, including
TIFF, JPEG, and PNG.

For example, this statement saves the contents of the current figure window as a PNG graphic in the
file called magicsquare.png.
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print -dpng magicsquare.png

To save the figure at the same size as the figure on the screen, use these statements:

set(gcf,'PaperPositionMode','auto')
print -dpng -r0 magicsquare.png

To save the same figure as a TIFF file with a resolution of 200 dpi, use the following command:

print -dtiff -r200 magicsquare.tiff

If you type print on the command line

print

the current figure prints on your default printer.
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Working with Graphics Objects

In this section...
“Graphics Objects” on page 4-25
“Setting Object Properties” on page 4-27
“Functions for Working with Objects” on page 4-28
“Passing Arguments” on page 4-29
“Finding the Handles of Existing Objects” on page 4-30

Graphics Objects
Graphics objects are the basic elements used to display graphs. These objects are organized into a
hierarchy, as shown by the following diagram.
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When you call a plotting function, MATLAB creates the graph using various graphics objects, such as
a figure window, axes, lines, text, and so on. Each object has a fixed set of properties, which you can
use to control the behavior and appearance of the graph.

For example, the following statement creates a bar graph from the data in the variable y and sets
properties that how the bars look:

y = [75 91 105 123.5 131 150 179 203 226 249 281.5];
bar(y,'FaceColor','green','EdgeColor','black','LineWidth',1.5)

Common Graphics Objects

When you call a function to create a graph, MATLAB creates a hierarchy of graphics objects. For
example, calling the plot function creates the following graphics objects:

• Figure — Window that contains axes, toolbars, menus, and so on.
• Axes — Coordinate system that contains the object representing the data
• Line — Lines that represent the value of data passed to the plot function.
• Text — Labels for axes tick marks and optional titles and annotations.

Different types of graphs use different objects to represent data. Because there are many kinds of
graphs, there are many types of data objects. Some are general purpose, such as lines and rectangles
and some are highly specialized, such as errorbars, colorbars, and legends.

Access Object Properties

Plotting functions can return the objects used to create the graph. For example, the following
statements create a graph and return the line object created by the plot function:

x = 1:10;
y = x.^3;
h = plot(x,y);

Use h to set the properties of the line object. For example, set its Color property.

h.Color = 'red';

You can also specify the line properties when you call the plotting function.

h = plot(x,y,'Color','red');

You can query the line properties to see the current value:

h.LineWidth

ans =
    0.5000

Finding the Properties of an Object

To view the properties of an object, type:

get(h)

MATLAB returns a list of the object’s properties with the current values.

To view an object’s properties with information about possible values, type:
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set(h)

Setting Object Properties
You can set multiple properties at once using the set function.

Setting Properties of Existing Objects

To set the same property to the same value on multiple objects, use the set function.

For example, the following statements plot a 5-by-5 matrix (creating five line objects, one per
column), and then set the Marker property to square and the MarkerFaceColor property to green.

y = magic(5);
h = plot(y);
set(h,'Marker','s','MarkerFaceColor','g')

In this case, h is a vector containing five handles, one for each of the five lines in the graph. The set
statement sets the Marker and MarkerFaceColor properties of all lines to the same value.

To set a property value on one object, index into the handle array:

h(1).LineWidth = 2;

Setting Multiple Property Values

If you want to set the properties of each line to a different value, you can use cell arrays to store all
the data and pass it to the set command. For example, create a plot and save the line handles:

figure
y = magic(5);
h = plot(y);

Suppose you want to add different markers to each lines and color the marker's face color the same
color as the line. You need to define two cell arrays—one containing the property names and the other
containing the desired values of the properties.

The prop_name cell array contains two elements:

prop_name(1) = {'Marker'};
prop_name(2) = {'MarkerFaceColor'};

The prop_values cell array contains 10 values: five values for the Marker property and five values
for the MarkerFaceColor property. Notice that prop_values is a two-dimensional cell array. The
first dimension indicates which handle in h the values apply to and the second dimension indicates
which property the value is assigned to:

prop_values(1,1) = {'s'};
prop_values(1,2) = {h(1).Color};
prop_values(2,1) = {'d'};
prop_values(2,2) = {h(2).Color};
prop_values(3,1) = {'o'};
prop_values(3,2) = {h(3).Color};
prop_values(4,1) = {'p'};
prop_values(4,2) = {h(4).Color};
prop_values(5,1) = {'h'};
prop_values(5,2) = {h(5).Color};
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The MarkerFaceColor is always assigned the value of the corresponding line's color (obtained by
getting the line Color property).

After defining the cell arrays, call set to specify the new property values:

set(h,prop_name,prop_values)

Functions for Working with Objects
This table lists functions commonly used when working with objects.

Function Purpose
allchild Find all children of specified objects.
ancestor Find ancestor of graphics object.
copyobj Copy graphics object.
delete Delete an object.
findall Find all graphics objects (including hidden handles).
findobj Find the handles of objects having specified property values.
gca Return the handle of the current axes.
gcf Return the handle of the current figure.
gco Return the handle of the current object.
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Function Purpose
get Query the values of an object's properties.
ishandle True if the value is a valid object handle.
set Set the values of an object's properties.

Passing Arguments
You can define specialized plotting functions to simplify the creation of customized graphs. By
defining a function, you can pass arguments like MATLAB plotting functions.

The following example shows a MATLAB function that evaluates a mathematical expression over the
range specified in the input argument x, and then plots the results. A second call to the plot function
plots the mean value of the results as a red line.

The function modifies the y-axis ticks based on the values calculated. Axis labels and a title finish the
custom graph.

function plotFunc(x)
   y = 1.5*cos(x) + 6*exp(-.1*x) + exp(.07*x).*sin(3*x);
   ym = mean(y);
   hfig = figure('Name','Function and Mean');
   hax = axes('Parent',hfig);
   plot(hax,x,y)
   hold on
   plot(hax,[min(x) max(x)],[ym ym],'Color','red')
   hold off
   ylab = hax.YTick;
   new_ylab = sort([ylab, ym]);
   hax.YTick = new_ylab;
   title ('y = 1.5cos(x) + 6e^{-0.1x} + e^{0.07x}sin(3x)')
   xlabel('X Axis')
   ylabel('Y Axis')
end

Define a value for the input argument and call the function.

x = -10:.005:40;
plotFunc(x)
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Finding the Handles of Existing Objects
The findobj function enables you to obtain the handles of graphics objects by searching for objects
with particular property values. With findobj you can specify the values of any combination of
properties, which makes it easy to pick one object out of many. findobj also recognizes regular
expressions.

Finding All Objects of a Certain Type

Because all objects have a Type property that identifies the type of object, you can find the handles of
all occurrences of a particular type of object. For example,

h = findobj('Type','patch');

finds the handles of all patch objects.

Finding Objects with a Particular Property

You can specify multiple properties to narrow the search. For example,

plot(rand(5),'r:')
h = findobj('Type','line','Color','r','LineStyle',':');

finds the handles of all red dotted lines.

h = 

4 Graphics

4-30



  5x1 Line array:

  Line
  Line
  Line
  Line
  Line

Limiting the Scope of the Search

You can specify the starting point in the object hierarchy by passing the handle of the starting figure
or axes as the first argument. For example,

h = findobj(gca,'Type','text','String','\pi/2');

finds π/2 only within the current axes.
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Programming

• “Control Flow” on page 5-2
• “Scripts and Functions” on page 5-8
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Control Flow
In this section...
“Conditional Control — if, else, switch” on page 5-2
“Loop Control — for, while, continue, break” on page 5-4
“Program Termination — return” on page 5-6
“Vectorization” on page 5-6
“Preallocation” on page 5-6

Conditional Control — if, else, switch
Conditional statements enable you to select at run time which block of code to execute. The simplest
conditional statement is an if statement. For example:

% Generate a random number
a = randi(100, 1);

% If it is even, divide by 2
if rem(a, 2) == 0
    disp('a is even')
    b = a/2;
end

if statements can include alternate choices, using the optional keywords elseif or else. For
example:

a = randi(100, 1);

if a < 30
    disp('small')
elseif a < 80
    disp('medium')
else
    disp('large')
end

Alternatively, when you want to test for equality against a set of known values, use a switch
statement. For example:

[dayNum, dayString] = weekday(date, 'long', 'en_US');

switch dayString
   case 'Monday'
      disp('Start of the work week')
   case 'Tuesday'
      disp('Day 2')
   case 'Wednesday'
      disp('Day 3')
   case 'Thursday'
      disp('Day 4')
   case 'Friday'
      disp('Last day of the work week')
   otherwise

5 Programming

5-2



      disp('Weekend!')
end

For both if and switch, MATLAB executes the code corresponding to the first true condition, and
then exits the code block. Each conditional statement requires the end keyword.

In general, when you have many possible discrete, known values, switch statements are easier to
read than if statements. However, you cannot test for inequality between switch and case values.
For example, you cannot implement this type of condition with a switch:

yourNumber = input('Enter a number: ');

if yourNumber < 0
    disp('Negative')
elseif yourNumber > 0
    disp('Positive')
else
    disp('Zero')
end

Array Comparisons in Conditional Statements

It is important to understand how relational operators and if statements work with matrices. When
you want to check for equality between two variables, you might use

if A == B, ...

This is valid MATLAB code, and does what you expect when A and B are scalars. But when A and B
are matrices, A == B does not test if they are equal, it tests where they are equal; the result is
another matrix of 0s and 1s showing element-by-element equality.

A = magic(4);
B = A;
B(1,1) = 0;

A == B

ans =

  4×4 logical array

   0   1   1   1
   1   1   1   1
   1   1   1   1
   1   1   1   1

The proper way to check for equality between two variables is to use the isequal function:

if isequal(A, B), ...

isequal returns a scalar logical value of 1 (representing true) or 0 (false), instead of a matrix, as
the expression to be evaluated by the if function. Using the A and B matrices from above, you get

isequal(A,B)

ans =

  logical
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   0

Here is another example to emphasize this point. If A and B are scalars, the following program will
never reach the “unexpected situation”. But for most pairs of matrices, including our magic squares
with interchanged columns, none of the matrix conditions A > B, A < B, or A == B is true for all
elements and so the else clause is executed:

if A > B
   'greater'
elseif A < B
   'less'
elseif A == B
   'equal'
else
   error('Unexpected situation')
end

Several functions are helpful for reducing the results of matrix comparisons to scalar conditions for
use with if, including

isequal
isempty
all
any

Loop Control — for, while, continue, break
This section covers those MATLAB functions that provide control over program loops.

for

The for loop repeats a group of statements a fixed, predetermined number of times. A matching end
delimits the statements:

for n = 3:32
   r(n) = rank(magic(n));
end
r

The semicolon terminating the inner statement suppresses repeated printing, and the r after the loop
displays the final result.

It is a good idea to indent the loops for readability, especially when they are nested:

for i = 1:m
   for j = 1:n
      H(i,j) = 1/(i+j);
   end
end

while

The while loop repeats a group of statements an indefinite number of times under control of a
logical condition. A matching end delimits the statements.
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Here is a complete program, illustrating while, if, else, and end, that uses interval bisection to
find a zero of a polynomial:

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b
   x = (a+b)/2;
   fx = x^3-2*x-5;
   if sign(fx) == sign(fa)
      a = x; fa = fx;
   else
      b = x; fb = fx;
   end
end
x

The result is a root of the polynomial x3 – 2x – 5, namely

x =
   2.09455148154233

The cautions involving matrix comparisons that are discussed in the section on the if statement also
apply to the while statement.

continue

The continue statement passes control to the next iteration of the for loop or while loop in which
it appears, skipping any remaining statements in the body of the loop. The same holds true for
continue statements in nested loops. That is, execution continues at the beginning of the loop in
which the continue statement was encountered.

The example below shows a continue loop that counts the lines of code in the file magic.m,
skipping all blank lines and comments. A continue statement is used to advance to the next line in
magic.m without incrementing the count whenever a blank line or comment line is encountered:

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)
    line = fgetl(fid);
    if isempty(line) || strncmp(line,'%',1) || ~ischar(line)
        continue
    end
    count = count + 1;
end
fprintf('%d lines\n',count);
fclose(fid);

break

The break statement lets you exit early from a for loop or while loop. In nested loops, break exits
from the innermost loop only.

Here is an improvement on the example from the previous section. Why is this use of break a good
idea?

a = 0; fa = -Inf;
b = 3; fb = Inf;

 Control Flow

5-5



while b-a > eps*b
   x = (a+b)/2;
   fx = x^3-2*x-5;
   if fx == 0
      break
   elseif sign(fx) == sign(fa)
      a = x; fa = fx;
   else
      b = x; fb = fx;
   end
end
x

Program Termination — return
This section covers the MATLAB return function that enables you to terminate your program before
it runs to completion.

return

return terminates the current sequence of commands and returns control to the invoking function
or to the keyboard. return is also used to terminate keyboard mode. A called function normally
transfers control to the function that invoked it when it reaches the end of the function. You can
insert a return statement within the called function to force an early termination and to transfer
control to the invoking function.

Vectorization
One way to make your MATLAB programs run faster is to vectorize the algorithms you use in
constructing the programs. Where other programming languages might use for loops or DO loops,
MATLAB can use vector or matrix operations. A simple example involves creating a table of
logarithms:

x = 0.01;
y = log10(x);
for k = 1:999
  x(k+1) = x(k) + 0.01;
  y(k+1) = log10(x(k+1));
end

A vectorized version of the same code is

x = .01:.01:10;
y = log10(x);

For more complicated code, vectorization options are not always so obvious.

Preallocation
If you cannot vectorize a piece of code, you can make your for loops go faster by preallocating any
vectors or arrays in which output results are stored. For example, this code uses the function zeros
to preallocate the vector created in the for loop. This makes the for loop execute significantly
faster:
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r = zeros(32,1);
for n = 1:32
    r(n) = rank(magic(n));
end

Without the preallocation in the previous example, the MATLAB interpreter enlarges the r vector by
one element each time through the loop. Vector preallocation eliminates this step and results in faster
execution.
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Scripts and Functions
In this section...
“Overview” on page 5-8
“Scripts” on page 5-8
“Functions” on page 5-9
“Types of Functions” on page 5-10
“Global Variables” on page 5-12
“Command vs. Function Syntax” on page 5-12

Overview
MATLAB provides a powerful programming language, as well as an interactive computational
environment. You can enter commands from the language one at a time at the MATLAB command
line, or you can write a series of commands to a file that you then execute as you would any MATLAB
function. Use the MATLAB Editor or any other text editor to create your own function files. Call these
functions as you would any other MATLAB function or command.

There are two kinds of program files:

• Scripts, which do not accept input arguments or return output arguments. They operate on data in
the workspace.

• Functions, which can accept input arguments and return output arguments. Internal variables are
local to the function.

If you are a new MATLAB programmer, just create the program files that you want to try out in the
current folder. As you develop more of your own files, you will want to organize them into other
folders and personal toolboxes that you can add to your MATLAB search path.

If you duplicate function names, MATLAB executes the one that occurs first in the search path.

To view the contents of a program file, for example, myfunction.m, use

type myfunction

Scripts
When you invoke a script, MATLAB simply executes the commands found in the file. Scripts can
operate on existing data in the workspace, or they can create new data on which to operate. Although
scripts do not return output arguments, any variables that they create remain in the workspace, to be
used in subsequent computations. In addition, scripts can produce graphical output using functions
like plot.

For example, create a file called magicrank.m that contains these MATLAB commands:

% Investigate the rank of magic squares
r = zeros(1,32);
for n = 3:32
   r(n) = rank(magic(n));
end
bar(r)
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Typing the statement

magicrank

causes MATLAB to execute the commands, compute the rank of the first 30 magic squares, and plot a
bar graph of the result. After execution of the file is complete, the variables n and r remain in the
workspace.

Functions
Functions are files that can accept input arguments and return output arguments. The names of the
file and of the function should be the same. Functions operate on variables within their own
workspace, separate from the workspace you access at the MATLAB command prompt.

A good example is provided by rank. The file rank.m is available in the folder

toolbox/matlab/matfun

You can see the file with

type rank

Here is the file:

function r = rank(A,tol)
%   RANK Matrix rank.
%   RANK(A) provides an estimate of the number of linearly
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%   independent rows or columns of a matrix A.
%   RANK(A,tol) is the number of singular values of A
%   that are larger than tol.
%   RANK(A) uses the default tol = max(size(A)) * norm(A) * eps.

s = svd(A);
if nargin==1
   tol = max(size(A)') * max(s) * eps;
end
r = sum(s > tol);

The first line of a function starts with the keyword function. It gives the function name and order of
arguments. In this case, there are up to two input arguments and one output argument.

The next several lines, up to the first blank or executable line, are comment lines that provide the
help text. These lines are printed when you type

help rank

The first line of the help text is the H1 line, which MATLAB displays when you use the lookfor
command or request help on a folder.

The rest of the file is the executable MATLAB code defining the function. The variable s introduced in
the body of the function, as well as the variables on the first line, r, A and tol, are all local to the
function; they are separate from any variables in the MATLAB workspace.

This example illustrates one aspect of MATLAB functions that is not ordinarily found in other
programming languages—a variable number of arguments. The rank function can be used in several
different ways:

rank(A)
r = rank(A)
r = rank(A,1.e-6)

Many functions work this way. If no output argument is supplied, the result is stored in ans. If the
second input argument is not supplied, the function computes a default value. Within the body of the
function, two quantities named nargin and nargout are available that tell you the number of input
and output arguments involved in each particular use of the function. The rank function uses
nargin, but does not need to use nargout.

Types of Functions
MATLAB offers several different types of functions to use in your programming.

Anonymous Functions

An anonymous function is a simple form of the MATLAB function that is defined within a single
MATLAB statement. It consists of a single MATLAB expression and any number of input and output
arguments. You can define an anonymous function right at the MATLAB command line, or within a
function or script. This gives you a quick means of creating simple functions without having to create
a file for them each time.

The syntax for creating an anonymous function from an expression is

f = @(arglist)expression
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The statement below creates an anonymous function that finds the square of a number. When you call
this function, MATLAB assigns the value you pass in to variable x, and then uses x in the equation
x.^2:

sqr = @(x) x.^2;

To execute the sqr function, type

a = sqr(5)
a =
   25

Main Functions and Local Functions

Any function that is not anonymous must be defined within a file. Each such function file contains a
required main function that appears first, and any number of local functions that can follow the main
function. Main functions have a wider scope than local functions. That is, main functions can be
called from outside of the file that defines them (for example, from the MATLAB command line or
from functions in other files) while local functions cannot. Local functions are visible only to the main
function and other local functions within their own file.

The rank function shown in the section on “Functions” on page 5-9 is an example of a main function.

Private Functions

A private function is a type of main function. Its unique characteristic is that it is visible only to a
limited group of other functions. This type of function can be useful if you want to limit access to a
function, or when you choose not to expose the implementation of a function.

Private functions reside in subfolders with the special name private. They are visible only to
functions in the parent folder. For example, assume the folder newmath is on the MATLAB search
path. A subfolder of newmath called private can contain functions that only the functions in
newmath can call.

Because private functions are invisible outside the parent folder, they can use the same names as
functions in other folders. This is useful if you want to create your own version of a particular
function while retaining the original in another folder. Because MATLAB looks for private functions
before standard functions, it will find a private function named test.m before a nonprivate file
named test.m.

Nested Functions

You can define functions within the body of another function. These are said to be nested within the
outer function. A nested function contains any or all of the components of any other function. In this
example, function B is nested in function A:

function x = A(p1, p2)
...
B(p2)
   function y = B(p3)
   ...
   end
...
end

Like other functions, a nested function has its own workspace where variables used by the function
are stored. But it also has access to the workspaces of all functions in which it is nested. So, for
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example, a variable that has a value assigned to it by the main function can be read or overwritten by
a function nested at any level within the main function. Similarly, a variable that is assigned in a
nested function can be read or overwritten by any of the functions containing that function.

Global Variables
If you want more than one function to share a single copy of a variable, simply declare the variable as
global in all the functions. Do the same thing at the command line if you want the base workspace
to access the variable. The global declaration must occur before the variable is actually used in a
function. Although it is not required, using capital letters for the names of global variables helps
distinguish them from other variables. For example, create a new function in a file called falling.m:

function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t.^2;

Then interactively enter the statements

global GRAVITY
GRAVITY = 32;
y = falling((0:.1:5)');

The two global statements make the value assigned to GRAVITY at the command prompt available
inside the function. You can then modify GRAVITY interactively and obtain new solutions without
editing any files.

Command vs. Function Syntax
You can write MATLAB functions that accept character arguments without the parentheses and
quotes. That is, MATLAB interprets

foo a b c

as

foo('a','b','c')

However, when you use the unquoted command form, MATLAB cannot return output arguments. For
example,

legend apples oranges

creates a legend on a plot using apples and oranges as labels. If you want the legend command to
return its output arguments, then you must use the quoted form:

[legh,objh] = legend('apples','oranges');

In addition, you must use the quoted form if any of the arguments is not a character vector.

Caution While the unquoted command syntax is convenient, in some cases it can be used incorrectly
without causing MATLAB to generate an error.
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Constructing Character Arguments in Code

The quoted function form enables you to construct character arguments within the code. The
following example processes multiple data files, August1.dat, August2.dat, and so on. It uses the
function int2str, which converts an integer to a character, to build the file name:

for d = 1:31
   s = ['August' int2str(d) '.dat'];
   load(s) 
   % Code to process the contents of the d-th file
end
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