

#### **QUICK START GUIDE**

# Machine Learning with MATLAB



| Naming Convention  fit + c(lassification) / r(egression) + model e.g., for SVM classifier m = fitcsvm(X,Y) |                                 |
|------------------------------------------------------------------------------------------------------------|---------------------------------|
|                                                                                                            | Model                           |
| c,r                                                                                                        | tree                            |
| c,r                                                                                                        | linear                          |
| c,r                                                                                                        | svm                             |
| c,r                                                                                                        | kernel                          |
| c,r                                                                                                        | ensem-<br>ble                   |
| С                                                                                                          | knn                             |
| С                                                                                                          | discr                           |
| С                                                                                                          | nb                              |
| r                                                                                                          | gp                              |
|                                                                                                            | (g)lm                           |
|                                                                                                            |                                 |
|                                                                                                            | c,r<br>c,r<br>c,r<br>c,r<br>c,r |

### **Feature Selection**

### **Neighborhood Component Analysis**

Automate identifying the features with predictive power.

fscnca(X labels, 'Lambda',...);
find(mdl.FeatureWeights > 0.01)



Also available: PCA Sparse filtering Matrix factorization Stepwise regression Reconstruction ICA t-SNE

### **Hyperparameter Tuning**

Explore and change parameters in app:



### **Automated Bayesian Optimization**

Leverage Bayesian model to decide which points in the hyperparameter space to try next. Much faster than grid search.

mdl = fit...(X, labels,

'OptimizeHyperparameters', 'auto');



# Deploy

### Standalone, Web Apps, Spark

Share as standalone, MapReduce, and Apache Spark™ applications; web apps; and Microsoft® Excel® add-ins.

### Integrate with Enterprise IT/OT

Convert into C/C++, Java®, .NET, or Python® library using MATLAB Compiler SDK™.

## **C-Code Generation**

Automatically convert to C/C++ code for embedded deployment using MATLAB  $\mathsf{Coder}^\mathsf{TM}$ 

- Train model Mdl = fitcsvm(X,Y);
- 2. saveCompactModel(Mdl,'mySVM');
- 3. Define entry-point function

function label = predictSVM(x)
 m = loadCompactModel('mySVM');
 label = predict(m,x);

end

4. Generate C code

codegen predictSVM -args {X}

Learn more: mathworks.com/machine-learning

### mathworks.com