
function y = kalmanfilter(z)
%#codegen
dt=1;
% Initialize state transition matrix
A=[1 0 dt 0 0 0;... % [x]
 0 1 0 dt 0 0;... % [y]
 0 0 1 0 dt 0;... % [Vx]
 0 0 0 1 0 dt;... % [Vy]
 0 0 0 0 1 0 ;... % [Ax]
 0 0 0 0 0 1]; % [Ay]
H = [1 0 0 0 0 0; 0 1 0 0 0 0]; % Initial
S = H * p_prd’ * H’ + R;
B = H * p_prd’;
klm_gain = (S \ B)’;
% Estimated state and covariance
x_est = x_prd + klm_gain * (z - H * x_prd);
p_est = p_prd - klm_gain * H * p_prd;
% Compute the estimated measurements
y = H * x_est;
end % of the function
S = H * p_prd’ * H’ + R;
B = H * p_prd’;
klm_gain = (S \ B)’;
% Estimated state and covariance
x_est = x_prd + klm_gain * (z - H * x_prd);
p_est = p_prd - klm_gain * H * p_prd;
% Compute the estimated measurements
y = H * x_est;
end % of the function ize mea-
surement matrix
Q = eye(6);
R = 1000 * eye(2);
persistent x_est p_est % Initial
state conditions
if isempty(x_est)
 x_est = zeros(6, 1); % x_es-
t=[x,y,Vx,Vy,Ax,Ay]’
 p_est = zeros(6, 6);
end
% Predicted state and covariance

Prepared by: Albert Ramirez Perez and Jack Erickson, MathWorks
Albert.RamirezPerez@MathWorks.com
Jack.Erickson@MathWorks.com
November 2018

-

-

-

-

-

Simulation and FPGA in the Loop Test Cases Traceability to HWR

Conceptual Design

DESIGN MODEL

Hardware Reqs

SPECIFICATION

• Simulation Results Report
• Model Coverage Report
• Model Standards Report
• Model Design Error Report
• System Design Description

• HDL Code Report
• Coding Standards Report
• Low Level Test Cases

M
od

el
 C

ov
er

ag
e

An
al

ys
is

Conceptual Design Traceability to HWR

HDL Coder

Simulink Test

RTL traceability to Conceptual Design

FP
GA

 in
 th

e
Lo

op
 Te

st
 C

as
es

 Tr
ac

ea
bi

lit
y

to
 C

on
ce

pt
ua

l D
es

ig
n

an
d

HW
R

Simulink Requirements

DO-254: Requested Activities
4.1(2) – Standards are selected and defined

DO-331: Tool Qualification Credit
Table MB.A-3 Verification of Requirements Process (Obj 2 to 7)
Table MB.A-4 Verification of Design Process (Obj 2 to 7 and 9 to 12)
Table MB.A-5 Verification of Coding and Integration Process (Obj 5)

Albert Ramirez Perez and Jack Erickson, MathWorks
Albert.RamirezPerez@MathWorks.com

Jack.Erickson@MathWorks.com
November 2018

DO-254 Model-Based Design Workflow with Qualified Tools

Reuse of the Simulation Test Cases
Adding HW specific Test Cases

Effort Distribution in Traditional Development Workflows

Unit Design &
Reqs Validation

Unit
VerificationSpecifications Implementation

(C, C++, HDL, …)

Effort Distribution in Model-Based Design Workflows

Specifications

Unit Design &
Reqs Validation

Implementation
(C, C++, HDL, …)

Unit
Verification

Autocoding Settings

Testing Environment Settings

HARDWARE
IMPLEMENTATION

Synthesizer

FPGA in the Loop Testing

DO-254: Required Activities:
6.2.2 (4) Verification coverage analysis should be performed to
determine that the verification process is complete

DO-331: Table MB.A-3 Verification of Requirements Process (Obj 1, 4 and 5)
Table MB.A-4 Verification of Design Process (Obj 1, 4, 5, 11 and 12)
Table MB.A-7 Verification of Verification Process Results (Obj 5 to 7)

DO-331: Table MB.A-3 Verification of Requirements Process (Obj 1 to 7)
Table MB.A-4 Verification of Design Process (Obj 1 to 6, 8 to 12)

Conceptual Design and RTL / HDL Traceability to HWR

De
sig

n
Im

pl
em

en
ta

tio
n

-M
AT

LA
B,

 S
im

ul
in

k,
 St

at
ef

lo
w,

 Si
m

ev
en

ts
, S

im
sc

ap
e

Process that
generates the
life-cycle data

MB Example 1 MB Example 2 MB Example 3 MB Example 4 MB Example 5

System
Requirement
and System

Design Processes

Requirements
allocated to

software

Requirements
from which the

Model is
developed

Requirements
from which the

Model is
developed

Requirements
from which the

Model is
developed

Requirements from
which the Model is

developed

Design ModelSoftware
Requirement
and Software

Design Processes

Requirements from
which the Model is

developed

Specification
Model

Specification
Model

Design Model

Design Model Design Model Textual
description

Software Coding
Process Source Code Source Code Source Code Source Code Source Code

DO-331 Table MB.1-1 Model Usage Examples

HDL CODE

Model-Based Design supplements that can be applied
• DO-330 for Tool Qualification
• DO-331 for Model-Based Design
• DO-333 for Formal Methods

DO-330 Tool Qualification Summary

SW Level
Tool Qualification Criteria

1 2 3

A TQL-1 TQL-4 TQL-5

B TQL-2 TQL-4 TQL-5

C TQL-3 TQL-5 TQL-5

D TQL-4 TQL-5 TQL-5

Tool Criteria Definition

1: Development Tool whose output is part of the resulting SW and thus could insert and error

2: Verification Tool that automates verification process (es) and thus could fail to detect and
error, and whose output is used to justify the elimination or reduction of:

- Verification process (es) other than that automated by the tool, or
- Development process (es) that could have an impact on the airborne (or NS/ATM) SW

3: Verification Tool that automates verification process(es) and thus could fail to detect and error

DO Qualification Kit

Tools Requirements, User Manual and other MathWorks documentation
Workflow Documentation and Tool Qualification Plans templates

Verification Inputs Test Cases and Expected Results

Specification Model is a model representing high-level requirements that provides an abstract representation of functional,
performance, interface, or safety characteristics of the software components. A Specification Model does not define software
design details such as internal data structures, internal data flow, or internal control flow.

Design Model is a model that defines any software design such as low-level requirements, software architecture, algorithms,
component internal data strictures, data flow and/or control flow. A model used to generate Source Code is a Design Model.

Unqualified Tools

Qualified Tools

Configuration Inputs

Artifacts

Simulink Requirements Requirements Authoring

Detailed Design (RTL)

Netlist and Routing

DO 254: 5.1.1 (1, 2)
– Requirements identified, defined, and documented
– Derived requirements produced

DO-254: Required Activities
6.3.2(6) – A simulation analysis compares the simulation results to the expected results

DO-254: 6.3.3.1(5) – The requirements should be compatible with the relevant HW design standards Fixed-Point Designer

Fixed Point
Model

Floating Point
Model

Implementation
Model

SW
DAL MC/DC Decision coverage Statement

coverage
data coupling and
control coupling

A 100% (Ind) 100% (Ind) 100% (Ind) 100% (Ind)

B 100% (Ind) 100% (Ind) 100% (Ind)

C 100% 100%

DO 254: Requested Activities
5.2.1(1) - Hardware item conceptual design developed consistent with requirements
5.2.1(2) - Derived requirements produced
6.2.1(2) – Traceability between hardware requirements, implementation, and verification procedures and results

DO-254: Requested Activities
5.3.1(1) – Detailed design is developed from
hardware item requirements and conceptual design

DO-254: Requested Activities
6.2.1(1) – Evidence is provided that the hardware implementation meets requirements
6.2.2 (4) Verification coverage analysis should be performed to determine that the verification process is complete

Note that the FPGA in the Loop is some corner cases but cannot be used as a Requirement Based Testing on the target
Hardware unless the complete functionality is loaded into the Mapper and Router. The optimizations that the router
applies for a subset of the design can be different from those applied when it optimizes the complete design.

HDL Verifier

Functional Equivalence Verification
vs the Conceptual Design

RTL Testbench (HDL)
Co-Simulation with EDA Tools

Other EDA tool Support

HDL VerifierLegacy HDL Code import (EDA Co-Simulation)

Simulink Coder HDL Verifier
codegen with a System- Verilog DPI

Validation
Model (Simulink)

HDL Co-Simulation
Model

FPGA Co-Simulation
Model (bitstream)

-ä

(FM-A) Automatic
Test Case

Generation

Requirement Based
Functional Test Cases

Test Cases identified
using missing coverage

Simulink Test

Design constraints (Equivalence classes, Boundary Values, Derived Reqs)

Simulink Coverage

Model in the Loop (MIL) Functional Testing

Si
m

ul
at

io
n

Te
st

Ca
se

s T
ra

ce
ab

ili
ty

(FM-B) Design Error Detection* & (FM-C) Property Proving

Simulation Cases Results

Co
ve

ra
ge

 M
et

ric
s

Testing Environment Settings

DO-331: Table MB.A-3 and MB.C-3 Verification of Requirements Process (Obj 10)
Table MB.A-4 and MB.C-3 Verification of Design Process (Obj 16)

DO-331: Table MB.A-3 and MB.C-3 Verification of Requirements Process (Obj 2, 4 and 7)
Table MB.A-4 and MB.C-4 Verification of Design Process (Obj 2, 4, 7, 9,11)

DO-333: Table FM.A-3 and FM.C-3 Verification of Requirements Process (Obj 8 to 11)
Table FM.A-4 and FM.C-4 Verification of Design Process (Obj 14 to 17)

Test Cases Traceability to Conceptual Design

Note: Formal Methods allow to detect errors in the Model including dead logic, integer overflow, division by zero, and
violations of design properties and assertions, out-of-bounds array access and certain other run-time errors in source code

Simulink Design Verifier
From the 3 capabilities of Simulink Design Verifier, only Design Error Detection can be qualified

Simulink Requirements

Modelling Standards

Simulink Check Model Conformance Metrics

Automatic Code Generation

Simulink Report Generator

Doc Templates Scripts

Some tools generate
directly the artifacts

Customer’s quotes
claim a total effort

reduction around 30%

Model Conversion

DO-254 Model-Based Design Workflow with Qualified Tools

-

-

-

-

-

Simulation and FPGA in the Loop Test Cases Traceability to HWR

Conceptual Design

DESIGN MODEL

Hardware Reqs

SPECIFICATION

• Simulation Results Report
• Model Coverage Report
• Model Standards Report
• Model Design Error Report
• System Design Description

• HDL Code Report
• Coding Standards Report
• Low Level Test Cases

M
od

el
 C

ov
er

ag
e

An
al

ys
is

Conceptual Design Traceability to HWR

HDL Coder

Simulink Test

RTL traceability to Conceptual Design

FP
GA

 in
 th

e
Lo

op
 Te

st
 C

as
es

 Tr
ac

ea
bi

lit
y

to
 C

on
ce

pt
ua

l D
es

ig
n

an
d

HW
R

Simulink Requirements

DO-254: Requested Activities
4.1(2) – Standards are selected and defined

DO-331: Tool Qualification Credit
Table MB.A-3 Verification of Requirements Process (Obj 2 to 7)
Table MB.A-4 Verification of Design Process (Obj 2 to 7 and 9 to 12)
Table MB.A-5 Verification of Coding and Integration Process (Obj 5)

Albert Ramirez Perez and Jack Erickson, MathWorks
Albert.RamirezPerez@MathWorks.com

Jack.Erickson@MathWorks.com
November 2018

DO-254 Model-Based Design Workflow with Qualified Tools

Reuse of the Simulation Test Cases
Adding HW specific Test Cases

Effort Distribution in Traditional Development Workflows

Unit Design &
Reqs Validation

Unit
VerificationSpecifications Implementation

(C, C++, HDL, …)

Effort Distribution in Model-Based Design Workflows

Specifications

Unit Design &
Reqs Validation

Implementation
(C, C++, HDL, …)

Unit
Verification

Autocoding Settings

Testing Environment Settings

HARDWARE
IMPLEMENTATION

Synthesizer

FPGA in the Loop Testing

DO-254: Required Activities:
6.2.2 (4) Verification coverage analysis should be performed to
determine that the verification process is complete

DO-331: Table MB.A-3 Verification of Requirements Process (Obj 1, 4 and 5)
Table MB.A-4 Verification of Design Process (Obj 1, 4, 5, 11 and 12)
Table MB.A-7 Verification of Verification Process Results (Obj 5 to 7)

DO-331: Table MB.A-3 Verification of Requirements Process (Obj 1 to 7)
Table MB.A-4 Verification of Design Process (Obj 1 to 6, 8 to 12)

Conceptual Design and RTL / HDL Traceability to HWR

De
sig

n
Im

pl
em

en
ta

tio
n

-M
AT

LA
B,

 S
im

ul
in

k,
 St

at
ef

lo
w,

 Si
m

ev
en

ts
, S

im
sc

ap
e

Process that
generates the
life-cycle data

MB Example 1 MB Example 2 MB Example 3 MB Example 4 MB Example 5

System
Requirement
and System

Design Processes

Requirements
allocated to

software

Requirements
from which the

Model is
developed

Requirements
from which the

Model is
developed

Requirements
from which the

Model is
developed

Requirements from
which the Model is

developed

Design ModelSoftware
Requirement
and Software

Design Processes

Requirements from
which the Model is

developed

Specification
Model

Specification
Model

Design Model

Design Model Design Model Textual
description

Software Coding
Process Source Code Source Code Source Code Source Code Source Code

DO-331 Table MB.1-1 Model Usage Examples

HDL CODE

Model-Based Design supplements that can be applied
• DO-330 for Tool Qualification
• DO-331 for Model-Based Design
• DO-333 for Formal Methods

DO-330 Tool Qualification Summary

SW Level
Tool Qualification Criteria

1 2 3

A TQL-1 TQL-4 TQL-5

B TQL-2 TQL-4 TQL-5

C TQL-3 TQL-5 TQL-5

D TQL-4 TQL-5 TQL-5

Tool Criteria Definition

1: Development Tool whose output is part of the resulting SW and thus could insert and error

2: Verification Tool that automates verification process (es) and thus could fail to detect and
error, and whose output is used to justify the elimination or reduction of:

- Verification process (es) other than that automated by the tool, or
- Development process (es) that could have an impact on the airborne (or NS/ATM) SW

3: Verification Tool that automates verification process(es) and thus could fail to detect and error

DO Qualification Kit

Tools Requirements, User Manual and other MathWorks documentation
Workflow Documentation and Tool Qualification Plans templates

Verification Inputs Test Cases and Expected Results

Specification Model is a model representing high-level requirements that provides an abstract representation of functional,
performance, interface, or safety characteristics of the software components. A Specification Model does not define software
design details such as internal data structures, internal data flow, or internal control flow.

Design Model is a model that defines any software design such as low-level requirements, software architecture, algorithms,
component internal data strictures, data flow and/or control flow. A model used to generate Source Code is a Design Model.

Unqualified Tools

Qualified Tools

Configuration Inputs

Artifacts

Simulink Requirements Requirements Authoring

Detailed Design (RTL)

Netlist and Routing

DO 254: 5.1.1 (1, 2)
– Requirements identified, defined, and documented
– Derived requirements produced

DO-254: Required Activities
6.3.2(6) – A simulation analysis compares the simulation results to the expected results

DO-254: 6.3.3.1(5) – The requirements should be compatible with the relevant HW design standards Fixed-Point Designer

Fixed Point
Model

Floating Point
Model

Implementation
Model

SW
DAL MC/DC Decision coverage Statement

coverage
data coupling and
control coupling

A 100% (Ind) 100% (Ind) 100% (Ind) 100% (Ind)

B 100% (Ind) 100% (Ind) 100% (Ind)

C 100% 100%

DO 254: Requested Activities
5.2.1(1) - Hardware item conceptual design developed consistent with requirements
5.2.1(2) - Derived requirements produced
6.2.1(2) – Traceability between hardware requirements, implementation, and verification procedures and results

DO-254: Requested Activities
5.3.1(1) – Detailed design is developed from
hardware item requirements and conceptual design

DO-254: Requested Activities
6.2.1(1) – Evidence is provided that the hardware implementation meets requirements
6.2.2 (4) Verification coverage analysis should be performed to determine that the verification process is complete

Note that the FPGA in the Loop is some corner cases but cannot be used as a Requirement Based Testing on the target
Hardware unless the complete functionality is loaded into the Mapper and Router. The optimizations that the router
applies for a subset of the design can be different from those applied when it optimizes the complete design.

HDL Verifier

Functional Equivalence Verification
vs the Conceptual Design

RTL Testbench (HDL)
Co-Simulation with EDA Tools

Other EDA tool Support

HDL VerifierLegacy HDL Code import (EDA Co-Simulation)

Simulink Coder HDL Verifier
codegen with a System- Verilog DPI

Validation
Model (Simulink)

HDL Co-Simulation
Model

FPGA Co-Simulation
Model (bitstream)

-ä

(FM-A) Automatic
Test Case

Generation

Requirement Based
Functional Test Cases

Test Cases identified
using missing coverage

Simulink Test

Design constraints (Equivalence classes, Boundary Values, Derived Reqs)

Simulink Coverage

Model in the Loop (MIL) Functional Testing

Si
m

ul
at

io
n

Te
st

Ca
se

s T
ra

ce
ab

ili
ty

(FM-B) Design Error Detection* & (FM-C) Property Proving

Simulation Cases Results

Co
ve

ra
ge

 M
et

ric
s

Testing Environment Settings

DO-331: Table MB.A-3 and MB.C-3 Verification of Requirements Process (Obj 10)
Table MB.A-4 and MB.C-3 Verification of Design Process (Obj 16)

DO-331: Table MB.A-3 and MB.C-3 Verification of Requirements Process (Obj 2, 4 and 7)
Table MB.A-4 and MB.C-4 Verification of Design Process (Obj 2, 4, 7, 9,11)

DO-333: Table FM.A-3 and FM.C-3 Verification of Requirements Process (Obj 8 to 11)
Table FM.A-4 and FM.C-4 Verification of Design Process (Obj 14 to 17)

Test Cases Traceability to Conceptual Design

Note: Formal Methods allow to detect errors in the Model including dead logic, integer overflow, division by zero, and
violations of design properties and assertions, out-of-bounds array access and certain other run-time errors in source code

Simulink Design Verifier
From the 3 capabilities of Simulink Design Verifier, only Design Error Detection can be qualified

Simulink Requirements

Modelling Standards

Simulink Check Model Conformance Metrics

Automatic Code Generation

Simulink Report Generator

Doc Templates Scripts

Some tools generate
directly the artifacts

Customer’s quotes
claim a total effort

reduction around 30%

Model Conversion

